| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > liminfgval | Structured version Visualization version GIF version | ||
| Description: Value of the inferior limit function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| liminfgval.1 | ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Ref | Expression |
|---|---|
| liminfgval | ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7362 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝑘[,)+∞) = (𝑀[,)+∞)) | |
| 2 | 1 | imaeq2d 6016 | . . . 4 ⊢ (𝑘 = 𝑀 → (𝐹 “ (𝑘[,)+∞)) = (𝐹 “ (𝑀[,)+∞))) |
| 3 | 2 | ineq1d 4168 | . . 3 ⊢ (𝑘 = 𝑀 → ((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*) = ((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*)) |
| 4 | 3 | infeq1d 9373 | . 2 ⊢ (𝑘 = 𝑀 → inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < ) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| 5 | liminfgval.1 | . 2 ⊢ 𝐺 = (𝑘 ∈ ℝ ↦ inf(((𝐹 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )) | |
| 6 | xrltso 13046 | . . 3 ⊢ < Or ℝ* | |
| 7 | 6 | infex 9390 | . 2 ⊢ inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < ) ∈ V |
| 8 | 4, 5, 7 | fvmpt 6938 | 1 ⊢ (𝑀 ∈ ℝ → (𝐺‘𝑀) = inf(((𝐹 “ (𝑀[,)+∞)) ∩ ℝ*), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ↦ cmpt 5176 “ cima 5624 ‘cfv 6489 (class class class)co 7355 infcinf 9336 ℝcr 11016 +∞cpnf 11154 ℝ*cxr 11156 < clt 11157 [,)cico 13254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-pre-lttri 11091 ax-pre-lttrn 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 |
| This theorem is referenced by: liminfval2 45928 |
| Copyright terms: Public domain | W3C validator |