Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemi Structured version   Visualization version   GIF version

Theorem ballotlemi 31437
Description: Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemi (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑖,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemi
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6497 . . . . . 6 (𝑑 = 𝐶 → (𝐹𝑑) = (𝐹𝐶))
21fveq1d 6499 . . . . 5 (𝑑 = 𝐶 → ((𝐹𝑑)‘𝑘) = ((𝐹𝐶)‘𝑘))
32eqeq1d 2775 . . . 4 (𝑑 = 𝐶 → (((𝐹𝑑)‘𝑘) = 0 ↔ ((𝐹𝐶)‘𝑘) = 0))
43rabbidv 3398 . . 3 (𝑑 = 𝐶 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0})
54infeq1d 8735 . 2 (𝑑 = 𝐶 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
6 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
7 fveq2 6497 . . . . . . . 8 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
87fveq1d 6499 . . . . . . 7 (𝑐 = 𝑑 → ((𝐹𝑐)‘𝑘) = ((𝐹𝑑)‘𝑘))
98eqeq1d 2775 . . . . . 6 (𝑐 = 𝑑 → (((𝐹𝑐)‘𝑘) = 0 ↔ ((𝐹𝑑)‘𝑘) = 0))
109rabbidv 3398 . . . . 5 (𝑐 = 𝑑 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0})
1110infeq1d 8735 . . . 4 (𝑐 = 𝑑 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
1211cbvmptv 5025 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < )) = (𝑑 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
136, 12eqtri 2797 . 2 𝐼 = (𝑑 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
14 ltso 10520 . . 3 < Or ℝ
1514infex 8751 . 2 inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ) ∈ V
165, 13, 15fvmpt 6594 1 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  wral 3083  {crab 3087  cdif 3821  cin 3823  𝒫 cpw 4417   class class class wbr 4926  cmpt 5005  cfv 6186  (class class class)co 6975  infcinf 8699  cr 10333  0cc0 10334  1c1 10335   + caddc 10337   < clt 10473  cmin 10669   / cdiv 11097  cn 11438  cz 11792  ...cfz 12707  chash 13504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-resscn 10391  ax-pre-lttri 10408  ax-pre-lttrn 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-po 5323  df-so 5324  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-sup 8700  df-inf 8701  df-pnf 10475  df-mnf 10476  df-ltxr 10478
This theorem is referenced by:  ballotlemiex  31438  ballotlemimin  31442  ballotlemfrcn0  31466  ballotlemirc  31468
  Copyright terms: Public domain W3C validator