![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi | Structured version Visualization version GIF version |
Description: Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
Ref | Expression |
---|---|
ballotlemi | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6891 | . . . . . 6 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
2 | 1 | fveq1d 6893 | . . . . 5 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑘) = ((𝐹‘𝐶)‘𝑘)) |
3 | 2 | eqeq1d 2733 | . . . 4 ⊢ (𝑑 = 𝐶 → (((𝐹‘𝑑)‘𝑘) = 0 ↔ ((𝐹‘𝐶)‘𝑘) = 0)) |
4 | 3 | rabbidv 3439 | . . 3 ⊢ (𝑑 = 𝐶 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}) |
5 | 4 | infeq1d 9478 | . 2 ⊢ (𝑑 = 𝐶 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
6 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
7 | fveq2 6891 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
8 | 7 | fveq1d 6893 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑘) = ((𝐹‘𝑑)‘𝑘)) |
9 | 8 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑐 = 𝑑 → (((𝐹‘𝑐)‘𝑘) = 0 ↔ ((𝐹‘𝑑)‘𝑘) = 0)) |
10 | 9 | rabbidv 3439 | . . . . 5 ⊢ (𝑐 = 𝑑 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}) |
11 | 10 | infeq1d 9478 | . . . 4 ⊢ (𝑐 = 𝑑 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
12 | 11 | cbvmptv 5261 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
13 | 6, 12 | eqtri 2759 | . 2 ⊢ 𝐼 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
14 | ltso 11301 | . . 3 ⊢ < Or ℝ | |
15 | 14 | infex 9494 | . 2 ⊢ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ) ∈ V |
16 | 5, 13, 15 | fvmpt 6998 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∀wral 3060 {crab 3431 ∖ cdif 3945 ∩ cin 3947 𝒫 cpw 4602 class class class wbr 5148 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 infcinf 9442 ℝcr 11115 0cc0 11116 1c1 11117 + caddc 11119 < clt 11255 − cmin 11451 / cdiv 11878 ℕcn 12219 ℤcz 12565 ...cfz 13491 ♯chash 14297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-pre-lttri 11190 ax-pre-lttrn 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-ltxr 11260 |
This theorem is referenced by: ballotlemiex 33965 ballotlemimin 33969 ballotlemfrcn0 33993 ballotlemirc 33995 |
Copyright terms: Public domain | W3C validator |