| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi | Structured version Visualization version GIF version | ||
| Description: Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| Ref | Expression |
|---|---|
| ballotlemi | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . . . . 6 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
| 2 | 1 | fveq1d 6824 | . . . . 5 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑘) = ((𝐹‘𝐶)‘𝑘)) |
| 3 | 2 | eqeq1d 2733 | . . . 4 ⊢ (𝑑 = 𝐶 → (((𝐹‘𝑑)‘𝑘) = 0 ↔ ((𝐹‘𝐶)‘𝑘) = 0)) |
| 4 | 3 | rabbidv 3402 | . . 3 ⊢ (𝑑 = 𝐶 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}) |
| 5 | 4 | infeq1d 9362 | . 2 ⊢ (𝑑 = 𝐶 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
| 6 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 7 | fveq2 6822 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
| 8 | 7 | fveq1d 6824 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑘) = ((𝐹‘𝑑)‘𝑘)) |
| 9 | 8 | eqeq1d 2733 | . . . . . 6 ⊢ (𝑐 = 𝑑 → (((𝐹‘𝑐)‘𝑘) = 0 ↔ ((𝐹‘𝑑)‘𝑘) = 0)) |
| 10 | 9 | rabbidv 3402 | . . . . 5 ⊢ (𝑐 = 𝑑 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}) |
| 11 | 10 | infeq1d 9362 | . . . 4 ⊢ (𝑐 = 𝑑 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
| 12 | 11 | cbvmptv 5193 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
| 13 | 6, 12 | eqtri 2754 | . 2 ⊢ 𝐼 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
| 14 | ltso 11193 | . . 3 ⊢ < Or ℝ | |
| 15 | 14 | infex 9379 | . 2 ⊢ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ) ∈ V |
| 16 | 5, 13, 15 | fvmpt 6929 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∖ cdif 3894 ∩ cin 3896 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 infcinf 9325 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 − cmin 11344 / cdiv 11774 ℕcn 12125 ℤcz 12468 ...cfz 13407 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: ballotlemiex 34515 ballotlemimin 34519 ballotlemfrcn0 34543 ballotlemirc 34545 |
| Copyright terms: Public domain | W3C validator |