![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemi | Structured version Visualization version GIF version |
Description: Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
Ref | Expression |
---|---|
ballotlemi | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6892 | . . . . . 6 ⊢ (𝑑 = 𝐶 → (𝐹‘𝑑) = (𝐹‘𝐶)) | |
2 | 1 | fveq1d 6894 | . . . . 5 ⊢ (𝑑 = 𝐶 → ((𝐹‘𝑑)‘𝑘) = ((𝐹‘𝐶)‘𝑘)) |
3 | 2 | eqeq1d 2727 | . . . 4 ⊢ (𝑑 = 𝐶 → (((𝐹‘𝑑)‘𝑘) = 0 ↔ ((𝐹‘𝐶)‘𝑘) = 0)) |
4 | 3 | rabbidv 3427 | . . 3 ⊢ (𝑑 = 𝐶 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}) |
5 | 4 | infeq1d 9500 | . 2 ⊢ (𝑑 = 𝐶 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
6 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
7 | fveq2 6892 | . . . . . . . 8 ⊢ (𝑐 = 𝑑 → (𝐹‘𝑐) = (𝐹‘𝑑)) | |
8 | 7 | fveq1d 6894 | . . . . . . 7 ⊢ (𝑐 = 𝑑 → ((𝐹‘𝑐)‘𝑘) = ((𝐹‘𝑑)‘𝑘)) |
9 | 8 | eqeq1d 2727 | . . . . . 6 ⊢ (𝑐 = 𝑑 → (((𝐹‘𝑐)‘𝑘) = 0 ↔ ((𝐹‘𝑑)‘𝑘) = 0)) |
10 | 9 | rabbidv 3427 | . . . . 5 ⊢ (𝑐 = 𝑑 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}) |
11 | 10 | infeq1d 9500 | . . . 4 ⊢ (𝑐 = 𝑑 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
12 | 11 | cbvmptv 5256 | . . 3 ⊢ (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
13 | 6, 12 | eqtri 2753 | . 2 ⊢ 𝐼 = (𝑑 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑑)‘𝑘) = 0}, ℝ, < )) |
14 | ltso 11324 | . . 3 ⊢ < Or ℝ | |
15 | 14 | infex 9516 | . 2 ⊢ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ) ∈ V |
16 | 5, 13, 15 | fvmpt 7000 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∀wral 3051 {crab 3419 ∖ cdif 3936 ∩ cin 3938 𝒫 cpw 4598 class class class wbr 5143 ↦ cmpt 5226 ‘cfv 6543 (class class class)co 7416 infcinf 9464 ℝcr 11137 0cc0 11138 1c1 11139 + caddc 11141 < clt 11278 − cmin 11474 / cdiv 11901 ℕcn 12242 ℤcz 12588 ...cfz 13516 ♯chash 14321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-ltxr 11283 |
This theorem is referenced by: ballotlemiex 34178 ballotlemimin 34182 ballotlemfrcn0 34206 ballotlemirc 34208 |
Copyright terms: Public domain | W3C validator |