Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemi Structured version   Visualization version   GIF version

Theorem ballotlemi 34177
Description: Value of 𝐼 for a given counting 𝐶. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemi (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑖,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemi
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . 6 (𝑑 = 𝐶 → (𝐹𝑑) = (𝐹𝐶))
21fveq1d 6894 . . . . 5 (𝑑 = 𝐶 → ((𝐹𝑑)‘𝑘) = ((𝐹𝐶)‘𝑘))
32eqeq1d 2727 . . . 4 (𝑑 = 𝐶 → (((𝐹𝑑)‘𝑘) = 0 ↔ ((𝐹𝐶)‘𝑘) = 0))
43rabbidv 3427 . . 3 (𝑑 = 𝐶 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0})
54infeq1d 9500 . 2 (𝑑 = 𝐶 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
6 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
7 fveq2 6892 . . . . . . . 8 (𝑐 = 𝑑 → (𝐹𝑐) = (𝐹𝑑))
87fveq1d 6894 . . . . . . 7 (𝑐 = 𝑑 → ((𝐹𝑐)‘𝑘) = ((𝐹𝑑)‘𝑘))
98eqeq1d 2727 . . . . . 6 (𝑐 = 𝑑 → (((𝐹𝑐)‘𝑘) = 0 ↔ ((𝐹𝑑)‘𝑘) = 0))
109rabbidv 3427 . . . . 5 (𝑐 = 𝑑 → {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0} = {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0})
1110infeq1d 9500 . . . 4 (𝑐 = 𝑑 → inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
1211cbvmptv 5256 . . 3 (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < )) = (𝑑 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
136, 12eqtri 2753 . 2 𝐼 = (𝑑 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑑)‘𝑘) = 0}, ℝ, < ))
14 ltso 11324 . . 3 < Or ℝ
1514infex 9516 . 2 inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ) ∈ V
165, 13, 15fvmpt 7000 1 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wral 3051  {crab 3419  cdif 3936  cin 3938  𝒫 cpw 4598   class class class wbr 5143  cmpt 5226  cfv 6543  (class class class)co 7416  infcinf 9464  cr 11137  0cc0 11138  1c1 11139   + caddc 11141   < clt 11278  cmin 11474   / cdiv 11901  cn 12242  cz 12588  ...cfz 13516  chash 14321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-ltxr 11283
This theorem is referenced by:  ballotlemiex  34178  ballotlemimin  34182  ballotlemfrcn0  34206  ballotlemirc  34208
  Copyright terms: Public domain W3C validator