MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsfn Structured version   Visualization version   GIF version

Theorem imasdsfn 17467
Description: The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
Assertion
Ref Expression
imasdsfn (𝜑𝐷 Fn (𝐵 × 𝐵))

Proof of Theorem imasdsfn
Dummy variables 𝑔 𝑖 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
2 xrltso 13127 . . . 4 < Or ℝ*
32infex 9494 . . 3 inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ) ∈ V
41, 3fnmpoi 8060 . 2 (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) Fn (𝐵 × 𝐵)
5 imasbas.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
6 imasbas.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
7 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
8 imasbas.r . . . 4 (𝜑𝑅𝑍)
9 imasds.e . . . 4 𝐸 = (dist‘𝑅)
10 imasds.d . . . 4 𝐷 = (dist‘𝑈)
115, 6, 7, 8, 9, 10imasds 17466 . . 3 (𝜑𝐷 = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )))
1211fneq1d 6642 . 2 (𝜑 → (𝐷 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) Fn (𝐵 × 𝐵)))
134, 12mpbiri 258 1 (𝜑𝐷 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wral 3060  {crab 3431   ciun 4997  cmpt 5231   × cxp 5674  ran crn 5677  ccom 5680   Fn wfn 6538  ontowfo 6541  cfv 6543  (class class class)co 7412  cmpo 7414  1st c1st 7977  2nd c2nd 7978  m cmap 8826  infcinf 9442  1c1 11117   + caddc 11119  *cxr 11254   < clt 11255  cmin 11451  cn 12219  ...cfz 13491  Basecbs 17151  distcds 17213   Σg cgsu 17393  *𝑠cxrs 17453  s cimas 17457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-mulr 17218  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-imas 17461
This theorem is referenced by:  imasf1oxmet  24114  imasf1omet  24115  xpsdsfn  24116
  Copyright terms: Public domain W3C validator