MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasdsfn Structured version   Visualization version   GIF version

Theorem imasdsfn 17477
Description: The distance function is a function on the base set. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
imasbas.u (𝜑𝑈 = (𝐹s 𝑅))
imasbas.v (𝜑𝑉 = (Base‘𝑅))
imasbas.f (𝜑𝐹:𝑉onto𝐵)
imasbas.r (𝜑𝑅𝑍)
imasds.e 𝐸 = (dist‘𝑅)
imasds.d 𝐷 = (dist‘𝑈)
Assertion
Ref Expression
imasdsfn (𝜑𝐷 Fn (𝐵 × 𝐵))

Proof of Theorem imasdsfn
Dummy variables 𝑔 𝑖 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ))
2 xrltso 13101 . . . 4 < Or ℝ*
32infex 9446 . . 3 inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < ) ∈ V
41, 3fnmpoi 8049 . 2 (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) Fn (𝐵 × 𝐵)
5 imasbas.u . . . 4 (𝜑𝑈 = (𝐹s 𝑅))
6 imasbas.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
7 imasbas.f . . . 4 (𝜑𝐹:𝑉onto𝐵)
8 imasbas.r . . . 4 (𝜑𝑅𝑍)
9 imasds.e . . . 4 𝐸 = (dist‘𝑅)
10 imasds.d . . . 4 𝐷 = (dist‘𝑈)
115, 6, 7, 8, 9, 10imasds 17476 . . 3 (𝜑𝐷 = (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )))
1211fneq1d 6611 . 2 (𝜑 → (𝐷 Fn (𝐵 × 𝐵) ↔ (𝑥𝐵, 𝑦𝐵 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑉 × 𝑉) ↑m (1...𝑛)) ∣ ((𝐹‘(1st ‘(‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(𝑖))) = (𝐹‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸𝑔))), ℝ*, < )) Fn (𝐵 × 𝐵)))
134, 12mpbiri 258 1 (𝜑𝐷 Fn (𝐵 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405   ciun 4955  cmpt 5188   × cxp 5636  ran crn 5639  ccom 5642   Fn wfn 6506  ontowfo 6509  cfv 6511  (class class class)co 7387  cmpo 7389  1st c1st 7966  2nd c2nd 7967  m cmap 8799  infcinf 9392  1c1 11069   + caddc 11071  *cxr 11207   < clt 11208  cmin 11405  cn 12186  ...cfz 13468  Basecbs 17179  distcds 17229   Σg cgsu 17403  *𝑠cxrs 17463  s cimas 17467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-imas 17471
This theorem is referenced by:  imasf1oxmet  24263  imasf1omet  24264  xpsdsfn  24265
  Copyright terms: Public domain W3C validator