![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqaalem1 | Structured version Visualization version GIF version |
Description: Lemma for elqaa 25826. The function π represents the denominators of the rational coefficients π΅. By multiplying them all together to make π , we get a number big enough to clear all the denominators and make π Β· πΉ an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa.1 | β’ (π β π΄ β β) |
elqaa.2 | β’ (π β πΉ β ((Polyββ) β {0π})) |
elqaa.3 | β’ (π β (πΉβπ΄) = 0) |
elqaa.4 | β’ π΅ = (coeffβπΉ) |
elqaa.5 | β’ π = (π β β0 β¦ inf({π β β β£ ((π΅βπ) Β· π) β β€}, β, < )) |
elqaa.6 | β’ π = (seq0( Β· , π)β(degβπΉ)) |
Ref | Expression |
---|---|
elqaalem1 | β’ ((π β§ πΎ β β0) β ((πβπΎ) β β β§ ((π΅βπΎ) Β· (πβπΎ)) β β€)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . . . . . 9 β’ (π = πΎ β (π΅βπ) = (π΅βπΎ)) | |
2 | 1 | oveq1d 7420 | . . . . . . . 8 β’ (π = πΎ β ((π΅βπ) Β· π) = ((π΅βπΎ) Β· π)) |
3 | 2 | eleq1d 2818 | . . . . . . 7 β’ (π = πΎ β (((π΅βπ) Β· π) β β€ β ((π΅βπΎ) Β· π) β β€)) |
4 | 3 | rabbidv 3440 | . . . . . 6 β’ (π = πΎ β {π β β β£ ((π΅βπ) Β· π) β β€} = {π β β β£ ((π΅βπΎ) Β· π) β β€}) |
5 | 4 | infeq1d 9468 | . . . . 5 β’ (π = πΎ β inf({π β β β£ ((π΅βπ) Β· π) β β€}, β, < ) = inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < )) |
6 | elqaa.5 | . . . . 5 β’ π = (π β β0 β¦ inf({π β β β£ ((π΅βπ) Β· π) β β€}, β, < )) | |
7 | ltso 11290 | . . . . . 6 β’ < Or β | |
8 | 7 | infex 9484 | . . . . 5 β’ inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < ) β V |
9 | 5, 6, 8 | fvmpt 6995 | . . . 4 β’ (πΎ β β0 β (πβπΎ) = inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < )) |
10 | 9 | adantl 482 | . . 3 β’ ((π β§ πΎ β β0) β (πβπΎ) = inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < )) |
11 | ssrab2 4076 | . . . . 5 β’ {π β β β£ ((π΅βπΎ) Β· π) β β€} β β | |
12 | nnuz 12861 | . . . . 5 β’ β = (β€β₯β1) | |
13 | 11, 12 | sseqtri 4017 | . . . 4 β’ {π β β β£ ((π΅βπΎ) Β· π) β β€} β (β€β₯β1) |
14 | elqaa.2 | . . . . . . . . 9 β’ (π β πΉ β ((Polyββ) β {0π})) | |
15 | 14 | eldifad 3959 | . . . . . . . 8 β’ (π β πΉ β (Polyββ)) |
16 | 0z 12565 | . . . . . . . . 9 β’ 0 β β€ | |
17 | zq 12934 | . . . . . . . . 9 β’ (0 β β€ β 0 β β) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 β’ 0 β β |
19 | elqaa.4 | . . . . . . . . 9 β’ π΅ = (coeffβπΉ) | |
20 | 19 | coef2 25736 | . . . . . . . 8 β’ ((πΉ β (Polyββ) β§ 0 β β) β π΅:β0βΆβ) |
21 | 15, 18, 20 | sylancl 586 | . . . . . . 7 β’ (π β π΅:β0βΆβ) |
22 | 21 | ffvelcdmda 7083 | . . . . . 6 β’ ((π β§ πΎ β β0) β (π΅βπΎ) β β) |
23 | qmulz 12931 | . . . . . 6 β’ ((π΅βπΎ) β β β βπ β β ((π΅βπΎ) Β· π) β β€) | |
24 | 22, 23 | syl 17 | . . . . 5 β’ ((π β§ πΎ β β0) β βπ β β ((π΅βπΎ) Β· π) β β€) |
25 | rabn0 4384 | . . . . 5 β’ ({π β β β£ ((π΅βπΎ) Β· π) β β€} β β β βπ β β ((π΅βπΎ) Β· π) β β€) | |
26 | 24, 25 | sylibr 233 | . . . 4 β’ ((π β§ πΎ β β0) β {π β β β£ ((π΅βπΎ) Β· π) β β€} β β ) |
27 | infssuzcl 12912 | . . . 4 β’ (({π β β β£ ((π΅βπΎ) Β· π) β β€} β (β€β₯β1) β§ {π β β β£ ((π΅βπΎ) Β· π) β β€} β β ) β inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < ) β {π β β β£ ((π΅βπΎ) Β· π) β β€}) | |
28 | 13, 26, 27 | sylancr 587 | . . 3 β’ ((π β§ πΎ β β0) β inf({π β β β£ ((π΅βπΎ) Β· π) β β€}, β, < ) β {π β β β£ ((π΅βπΎ) Β· π) β β€}) |
29 | 10, 28 | eqeltrd 2833 | . 2 β’ ((π β§ πΎ β β0) β (πβπΎ) β {π β β β£ ((π΅βπΎ) Β· π) β β€}) |
30 | oveq2 7413 | . . . 4 β’ (π = (πβπΎ) β ((π΅βπΎ) Β· π) = ((π΅βπΎ) Β· (πβπΎ))) | |
31 | 30 | eleq1d 2818 | . . 3 β’ (π = (πβπΎ) β (((π΅βπΎ) Β· π) β β€ β ((π΅βπΎ) Β· (πβπΎ)) β β€)) |
32 | 31 | elrab 3682 | . 2 β’ ((πβπΎ) β {π β β β£ ((π΅βπΎ) Β· π) β β€} β ((πβπΎ) β β β§ ((π΅βπΎ) Β· (πβπΎ)) β β€)) |
33 | 29, 32 | sylib 217 | 1 β’ ((π β§ πΎ β β0) β ((πβπΎ) β β β§ ((π΅βπΎ) Β· (πβπΎ)) β β€)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 βwrex 3070 {crab 3432 β cdif 3944 β wss 3947 β c0 4321 {csn 4627 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 infcinf 9432 βcc 11104 βcr 11105 0cc0 11106 1c1 11107 Β· cmul 11111 < clt 11244 βcn 12208 β0cn0 12468 β€cz 12554 β€β₯cuz 12818 βcq 12928 seqcseq 13962 0πc0p 25177 Polycply 25689 coeffccoe 25691 degcdgr 25692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-0p 25178 df-ply 25693 df-coe 25695 |
This theorem is referenced by: elqaalem2 25824 |
Copyright terms: Public domain | W3C validator |