MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem1 Structured version   Visualization version   GIF version

Theorem elqaalem1 26376
Description: Lemma for elqaa 26379. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem1
StepHypRef Expression
1 fveq2 6907 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
21oveq1d 7446 . . . . . . . 8 (𝑘 = 𝐾 → ((𝐵𝑘) · 𝑛) = ((𝐵𝐾) · 𝑛))
32eleq1d 2824 . . . . . . 7 (𝑘 = 𝐾 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · 𝑛) ∈ ℤ))
43rabbidv 3441 . . . . . 6 (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
54infeq1d 9515 . . . . 5 (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
6 elqaa.5 . . . . 5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
7 ltso 11339 . . . . . 6 < Or ℝ
87infex 9531 . . . . 5 inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
95, 6, 8fvmpt 7016 . . . 4 (𝐾 ∈ ℕ0 → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
109adantl 481 . . 3 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
11 ssrab2 4090 . . . . 5 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ
12 nnuz 12919 . . . . 5 ℕ = (ℤ‘1)
1311, 12sseqtri 4032 . . . 4 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
14 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1514eldifad 3975 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℚ))
16 0z 12622 . . . . . . . . 9 0 ∈ ℤ
17 zq 12994 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
1816, 17ax-mp 5 . . . . . . . 8 0 ∈ ℚ
19 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
2019coef2 26285 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
2115, 18, 20sylancl 586 . . . . . . 7 (𝜑𝐵:ℕ0⟶ℚ)
2221ffvelcdmda 7104 . . . . . 6 ((𝜑𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℚ)
23 qmulz 12991 . . . . . 6 ((𝐵𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
25 rabn0 4395 . . . . 5 ({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2624, 25sylibr 234 . . . 4 ((𝜑𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅)
27 infssuzcl 12972 . . . 4 (({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2813, 26, 27sylancr 587 . . 3 ((𝜑𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2910, 28eqeltrd 2839 . 2 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
30 oveq2 7439 . . . 4 (𝑛 = (𝑁𝐾) → ((𝐵𝐾) · 𝑛) = ((𝐵𝐾) · (𝑁𝐾)))
3130eleq1d 2824 . . 3 (𝑛 = (𝑁𝐾) → (((𝐵𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3231elrab 3695 . 2 ((𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3329, 32sylib 218 1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  cdif 3960  wss 3963  c0 4339  {csn 4631  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  infcinf 9479  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158   < clt 11293  cn 12264  0cn0 12524  cz 12611  cuz 12876  cq 12988  seqcseq 14039  0𝑝c0p 25718  Polycply 26238  coeffccoe 26240  degcdgr 26241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-coe 26244
This theorem is referenced by:  elqaalem2  26377
  Copyright terms: Public domain W3C validator