![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqaalem1 | Structured version Visualization version GIF version |
Description: Lemma for elqaa 24594. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
elqaa.2 | ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) |
elqaa.3 | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
elqaa.4 | ⊢ 𝐵 = (coeff‘𝐹) |
elqaa.5 | ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
elqaa.6 | ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) |
Ref | Expression |
---|---|
elqaalem1 | ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6541 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (𝐵‘𝑘) = (𝐵‘𝐾)) | |
2 | 1 | oveq1d 7034 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ((𝐵‘𝑘) · 𝑛) = ((𝐵‘𝐾) · 𝑛)) |
3 | 2 | eleq1d 2866 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (((𝐵‘𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · 𝑛) ∈ ℤ)) |
4 | 3 | rabbidv 3424 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
5 | 4 | infeq1d 8790 | . . . . 5 ⊢ (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
6 | elqaa.5 | . . . . 5 ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) | |
7 | ltso 10570 | . . . . . 6 ⊢ < Or ℝ | |
8 | 7 | infex 8806 | . . . . 5 ⊢ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V |
9 | 5, 6, 8 | fvmpt 6638 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
11 | ssrab2 3979 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ | |
12 | nnuz 12130 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
13 | 11, 12 | sseqtri 3926 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) |
14 | elqaa.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
15 | 14 | eldifad 3873 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℚ)) |
16 | 0z 11842 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
17 | zq 12203 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ 0 ∈ ℚ |
19 | elqaa.4 | . . . . . . . . 9 ⊢ 𝐵 = (coeff‘𝐹) | |
20 | 19 | coef2 24504 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ) |
21 | 15, 18, 20 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐵:ℕ0⟶ℚ) |
22 | 21 | ffvelrnda 6719 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝐵‘𝐾) ∈ ℚ) |
23 | qmulz 12200 | . . . . . 6 ⊢ ((𝐵‘𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) |
25 | rabn0 4261 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
26 | 24, 25 | sylibr 235 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) |
27 | infssuzcl 12181 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) | |
28 | 13, 26, 27 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
29 | 10, 28 | eqeltrd 2882 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
30 | oveq2 7027 | . . . 4 ⊢ (𝑛 = (𝑁‘𝐾) → ((𝐵‘𝐾) · 𝑛) = ((𝐵‘𝐾) · (𝑁‘𝐾))) | |
31 | 30 | eleq1d 2866 | . . 3 ⊢ (𝑛 = (𝑁‘𝐾) → (((𝐵‘𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
32 | 31 | elrab 3617 | . 2 ⊢ ((𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
33 | 29, 32 | sylib 219 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2080 ≠ wne 2983 ∃wrex 3105 {crab 3108 ∖ cdif 3858 ⊆ wss 3861 ∅c0 4213 {csn 4474 ↦ cmpt 5043 ⟶wf 6224 ‘cfv 6228 (class class class)co 7019 infcinf 8754 ℂcc 10384 ℝcr 10385 0cc0 10386 1c1 10387 · cmul 10391 < clt 10524 ℕcn 11488 ℕ0cn0 11747 ℤcz 11831 ℤ≥cuz 12093 ℚcq 12197 seqcseq 13219 0𝑝c0p 23953 Polycply 24457 coeffccoe 24459 degcdgr 24460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-inf2 8953 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 ax-pre-sup 10464 ax-addf 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rmo 3112 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-se 5406 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-isom 6237 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-of 7270 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-er 8142 df-map 8261 df-pm 8262 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-sup 8755 df-inf 8756 df-oi 8823 df-card 9217 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-div 11148 df-nn 11489 df-2 11550 df-3 11551 df-n0 11748 df-z 11832 df-uz 12094 df-q 12198 df-rp 12240 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-0p 23954 df-ply 24461 df-coe 24463 |
This theorem is referenced by: elqaalem2 24592 |
Copyright terms: Public domain | W3C validator |