MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem1 Structured version   Visualization version   GIF version

Theorem elqaalem1 25479
Description: Lemma for elqaa 25482. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem1
StepHypRef Expression
1 fveq2 6774 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
21oveq1d 7290 . . . . . . . 8 (𝑘 = 𝐾 → ((𝐵𝑘) · 𝑛) = ((𝐵𝐾) · 𝑛))
32eleq1d 2823 . . . . . . 7 (𝑘 = 𝐾 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · 𝑛) ∈ ℤ))
43rabbidv 3414 . . . . . 6 (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
54infeq1d 9236 . . . . 5 (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
6 elqaa.5 . . . . 5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
7 ltso 11055 . . . . . 6 < Or ℝ
87infex 9252 . . . . 5 inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
95, 6, 8fvmpt 6875 . . . 4 (𝐾 ∈ ℕ0 → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
109adantl 482 . . 3 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
11 ssrab2 4013 . . . . 5 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ
12 nnuz 12621 . . . . 5 ℕ = (ℤ‘1)
1311, 12sseqtri 3957 . . . 4 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
14 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1514eldifad 3899 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℚ))
16 0z 12330 . . . . . . . . 9 0 ∈ ℤ
17 zq 12694 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
1816, 17ax-mp 5 . . . . . . . 8 0 ∈ ℚ
19 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
2019coef2 25392 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
2115, 18, 20sylancl 586 . . . . . . 7 (𝜑𝐵:ℕ0⟶ℚ)
2221ffvelrnda 6961 . . . . . 6 ((𝜑𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℚ)
23 qmulz 12691 . . . . . 6 ((𝐵𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
25 rabn0 4319 . . . . 5 ({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2624, 25sylibr 233 . . . 4 ((𝜑𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅)
27 infssuzcl 12672 . . . 4 (({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2813, 26, 27sylancr 587 . . 3 ((𝜑𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2910, 28eqeltrd 2839 . 2 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
30 oveq2 7283 . . . 4 (𝑛 = (𝑁𝐾) → ((𝐵𝐾) · 𝑛) = ((𝐵𝐾) · (𝑁𝐾)))
3130eleq1d 2823 . . 3 (𝑛 = (𝑁𝐾) → (((𝐵𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3231elrab 3624 . 2 ((𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3329, 32sylib 217 1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  cdif 3884  wss 3887  c0 4256  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  infcinf 9200  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cn 11973  0cn0 12233  cz 12319  cuz 12582  cq 12688  seqcseq 13721  0𝑝c0p 24833  Polycply 25345  coeffccoe 25347  degcdgr 25348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-0p 24834  df-ply 25349  df-coe 25351
This theorem is referenced by:  elqaalem2  25480
  Copyright terms: Public domain W3C validator