MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem1 Structured version   Visualization version   GIF version

Theorem elqaalem1 26379
Description: Lemma for elqaa 26382. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem1
StepHypRef Expression
1 fveq2 6920 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
21oveq1d 7463 . . . . . . . 8 (𝑘 = 𝐾 → ((𝐵𝑘) · 𝑛) = ((𝐵𝐾) · 𝑛))
32eleq1d 2829 . . . . . . 7 (𝑘 = 𝐾 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · 𝑛) ∈ ℤ))
43rabbidv 3451 . . . . . 6 (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
54infeq1d 9546 . . . . 5 (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
6 elqaa.5 . . . . 5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
7 ltso 11370 . . . . . 6 < Or ℝ
87infex 9562 . . . . 5 inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
95, 6, 8fvmpt 7029 . . . 4 (𝐾 ∈ ℕ0 → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
109adantl 481 . . 3 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
11 ssrab2 4103 . . . . 5 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ
12 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
1311, 12sseqtri 4045 . . . 4 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
14 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1514eldifad 3988 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℚ))
16 0z 12650 . . . . . . . . 9 0 ∈ ℤ
17 zq 13019 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
1816, 17ax-mp 5 . . . . . . . 8 0 ∈ ℚ
19 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
2019coef2 26290 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
2115, 18, 20sylancl 585 . . . . . . 7 (𝜑𝐵:ℕ0⟶ℚ)
2221ffvelcdmda 7118 . . . . . 6 ((𝜑𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℚ)
23 qmulz 13016 . . . . . 6 ((𝐵𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
25 rabn0 4412 . . . . 5 ({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2624, 25sylibr 234 . . . 4 ((𝜑𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅)
27 infssuzcl 12997 . . . 4 (({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2813, 26, 27sylancr 586 . . 3 ((𝜑𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2910, 28eqeltrd 2844 . 2 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
30 oveq2 7456 . . . 4 (𝑛 = (𝑁𝐾) → ((𝐵𝐾) · 𝑛) = ((𝐵𝐾) · (𝑁𝐾)))
3130eleq1d 2829 . . 3 (𝑛 = (𝑁𝐾) → (((𝐵𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3231elrab 3708 . 2 ((𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3329, 32sylib 218 1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  {crab 3443  cdif 3973  wss 3976  c0 4352  {csn 4648  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189   < clt 11324  cn 12293  0cn0 12553  cz 12639  cuz 12903  cq 13013  seqcseq 14052  0𝑝c0p 25723  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249
This theorem is referenced by:  elqaalem2  26380
  Copyright terms: Public domain W3C validator