MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqaalem1 Structured version   Visualization version   GIF version

Theorem elqaalem1 26361
Description: Lemma for elqaa 26364. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.)
Hypotheses
Ref Expression
elqaa.1 (𝜑𝐴 ∈ ℂ)
elqaa.2 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
elqaa.3 (𝜑 → (𝐹𝐴) = 0)
elqaa.4 𝐵 = (coeff‘𝐹)
elqaa.5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
elqaa.6 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹))
Assertion
Ref Expression
elqaalem1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑘,𝑛   𝜑,𝑘   𝑘,𝐾,𝑛   𝑘,𝑁,𝑛   𝑅,𝑘
Allowed substitution hints:   𝜑(𝑛)   𝑅(𝑛)   𝐹(𝑘,𝑛)

Proof of Theorem elqaalem1
StepHypRef Expression
1 fveq2 6906 . . . . . . . . 9 (𝑘 = 𝐾 → (𝐵𝑘) = (𝐵𝐾))
21oveq1d 7446 . . . . . . . 8 (𝑘 = 𝐾 → ((𝐵𝑘) · 𝑛) = ((𝐵𝐾) · 𝑛))
32eleq1d 2826 . . . . . . 7 (𝑘 = 𝐾 → (((𝐵𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · 𝑛) ∈ ℤ))
43rabbidv 3444 . . . . . 6 (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
54infeq1d 9517 . . . . 5 (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
6 elqaa.5 . . . . 5 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵𝑘) · 𝑛) ∈ ℤ}, ℝ, < ))
7 ltso 11341 . . . . . 6 < Or ℝ
87infex 9533 . . . . 5 inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V
95, 6, 8fvmpt 7016 . . . 4 (𝐾 ∈ ℕ0 → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
109adantl 481 . . 3 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ))
11 ssrab2 4080 . . . . 5 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ
12 nnuz 12921 . . . . 5 ℕ = (ℤ‘1)
1311, 12sseqtri 4032 . . . 4 {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1)
14 elqaa.2 . . . . . . . . 9 (𝜑𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
1514eldifad 3963 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘ℚ))
16 0z 12624 . . . . . . . . 9 0 ∈ ℤ
17 zq 12996 . . . . . . . . 9 (0 ∈ ℤ → 0 ∈ ℚ)
1816, 17ax-mp 5 . . . . . . . 8 0 ∈ ℚ
19 elqaa.4 . . . . . . . . 9 𝐵 = (coeff‘𝐹)
2019coef2 26270 . . . . . . . 8 ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ)
2115, 18, 20sylancl 586 . . . . . . 7 (𝜑𝐵:ℕ0⟶ℚ)
2221ffvelcdmda 7104 . . . . . 6 ((𝜑𝐾 ∈ ℕ0) → (𝐵𝐾) ∈ ℚ)
23 qmulz 12993 . . . . . 6 ((𝐵𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2422, 23syl 17 . . . . 5 ((𝜑𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
25 rabn0 4389 . . . . 5 ({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵𝐾) · 𝑛) ∈ ℤ)
2624, 25sylibr 234 . . . 4 ((𝜑𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅)
27 infssuzcl 12974 . . . 4 (({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2813, 26, 27sylancr 587 . . 3 ((𝜑𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
2910, 28eqeltrd 2841 . 2 ((𝜑𝐾 ∈ ℕ0) → (𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ})
30 oveq2 7439 . . . 4 (𝑛 = (𝑁𝐾) → ((𝐵𝐾) · 𝑛) = ((𝐵𝐾) · (𝑁𝐾)))
3130eleq1d 2826 . . 3 (𝑛 = (𝑁𝐾) → (((𝐵𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3231elrab 3692 . 2 ((𝑁𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
3329, 32sylib 218 1 ((𝜑𝐾 ∈ ℕ0) → ((𝑁𝐾) ∈ ℕ ∧ ((𝐵𝐾) · (𝑁𝐾)) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  {csn 4626  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  infcinf 9481  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cn 12266  0cn0 12526  cz 12613  cuz 12878  cq 12990  seqcseq 14042  0𝑝c0p 25704  Polycply 26223  coeffccoe 26225  degcdgr 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-0p 25705  df-ply 26227  df-coe 26229
This theorem is referenced by:  elqaalem2  26362
  Copyright terms: Public domain W3C validator