![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqaalem1 | Structured version Visualization version GIF version |
Description: Lemma for elqaa 26379. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
elqaa.2 | ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) |
elqaa.3 | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
elqaa.4 | ⊢ 𝐵 = (coeff‘𝐹) |
elqaa.5 | ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
elqaa.6 | ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) |
Ref | Expression |
---|---|
elqaalem1 | ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6907 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (𝐵‘𝑘) = (𝐵‘𝐾)) | |
2 | 1 | oveq1d 7446 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ((𝐵‘𝑘) · 𝑛) = ((𝐵‘𝐾) · 𝑛)) |
3 | 2 | eleq1d 2824 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (((𝐵‘𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · 𝑛) ∈ ℤ)) |
4 | 3 | rabbidv 3441 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
5 | 4 | infeq1d 9515 | . . . . 5 ⊢ (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
6 | elqaa.5 | . . . . 5 ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) | |
7 | ltso 11339 | . . . . . 6 ⊢ < Or ℝ | |
8 | 7 | infex 9531 | . . . . 5 ⊢ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V |
9 | 5, 6, 8 | fvmpt 7016 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
11 | ssrab2 4090 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ | |
12 | nnuz 12919 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
13 | 11, 12 | sseqtri 4032 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) |
14 | elqaa.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
15 | 14 | eldifad 3975 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℚ)) |
16 | 0z 12622 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
17 | zq 12994 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ 0 ∈ ℚ |
19 | elqaa.4 | . . . . . . . . 9 ⊢ 𝐵 = (coeff‘𝐹) | |
20 | 19 | coef2 26285 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ) |
21 | 15, 18, 20 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐵:ℕ0⟶ℚ) |
22 | 21 | ffvelcdmda 7104 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝐵‘𝐾) ∈ ℚ) |
23 | qmulz 12991 | . . . . . 6 ⊢ ((𝐵‘𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
24 | 22, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) |
25 | rabn0 4395 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
26 | 24, 25 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) |
27 | infssuzcl 12972 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) | |
28 | 13, 26, 27 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
29 | 10, 28 | eqeltrd 2839 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
30 | oveq2 7439 | . . . 4 ⊢ (𝑛 = (𝑁‘𝐾) → ((𝐵‘𝐾) · 𝑛) = ((𝐵‘𝐾) · (𝑁‘𝐾))) | |
31 | 30 | eleq1d 2824 | . . 3 ⊢ (𝑛 = (𝑁‘𝐾) → (((𝐵‘𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
32 | 31 | elrab 3695 | . 2 ⊢ ((𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
33 | 29, 32 | sylib 218 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ∖ cdif 3960 ⊆ wss 3963 ∅c0 4339 {csn 4631 ↦ cmpt 5231 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 infcinf 9479 ℂcc 11151 ℝcr 11152 0cc0 11153 1c1 11154 · cmul 11158 < clt 11293 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 ℤ≥cuz 12876 ℚcq 12988 seqcseq 14039 0𝑝c0p 25718 Polycply 26238 coeffccoe 26240 degcdgr 26241 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-fz 13545 df-fzo 13692 df-fl 13829 df-seq 14040 df-exp 14100 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-rlim 15522 df-sum 15720 df-0p 25719 df-ply 26242 df-coe 26244 |
This theorem is referenced by: elqaalem2 26377 |
Copyright terms: Public domain | W3C validator |