| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elqaalem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for elqaa 26237. The function 𝑁 represents the denominators of the rational coefficients 𝐵. By multiplying them all together to make 𝑅, we get a number big enough to clear all the denominators and make 𝑅 · 𝐹 an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by AV, 3-Oct-2020.) |
| Ref | Expression |
|---|---|
| elqaa.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| elqaa.2 | ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) |
| elqaa.3 | ⊢ (𝜑 → (𝐹‘𝐴) = 0) |
| elqaa.4 | ⊢ 𝐵 = (coeff‘𝐹) |
| elqaa.5 | ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
| elqaa.6 | ⊢ 𝑅 = (seq0( · , 𝑁)‘(deg‘𝐹)) |
| Ref | Expression |
|---|---|
| elqaalem1 | ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6861 | . . . . . . . . 9 ⊢ (𝑘 = 𝐾 → (𝐵‘𝑘) = (𝐵‘𝐾)) | |
| 2 | 1 | oveq1d 7405 | . . . . . . . 8 ⊢ (𝑘 = 𝐾 → ((𝐵‘𝑘) · 𝑛) = ((𝐵‘𝐾) · 𝑛)) |
| 3 | 2 | eleq1d 2814 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (((𝐵‘𝑘) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · 𝑛) ∈ ℤ)) |
| 4 | 3 | rabbidv 3416 | . . . . . 6 ⊢ (𝑘 = 𝐾 → {𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ} = {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
| 5 | 4 | infeq1d 9436 | . . . . 5 ⊢ (𝑘 = 𝐾 → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
| 6 | elqaa.5 | . . . . 5 ⊢ 𝑁 = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) | |
| 7 | ltso 11261 | . . . . . 6 ⊢ < Or ℝ | |
| 8 | 7 | infex 9453 | . . . . 5 ⊢ inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ V |
| 9 | 5, 6, 8 | fvmpt 6971 | . . . 4 ⊢ (𝐾 ∈ ℕ0 → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) = inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < )) |
| 11 | ssrab2 4046 | . . . . 5 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ ℕ | |
| 12 | nnuz 12843 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
| 13 | 11, 12 | sseqtri 3998 | . . . 4 ⊢ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) |
| 14 | elqaa.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
| 15 | 14 | eldifad 3929 | . . . . . . . 8 ⊢ (𝜑 → 𝐹 ∈ (Poly‘ℚ)) |
| 16 | 0z 12547 | . . . . . . . . 9 ⊢ 0 ∈ ℤ | |
| 17 | zq 12920 | . . . . . . . . 9 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . 8 ⊢ 0 ∈ ℚ |
| 19 | elqaa.4 | . . . . . . . . 9 ⊢ 𝐵 = (coeff‘𝐹) | |
| 20 | 19 | coef2 26143 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℚ) ∧ 0 ∈ ℚ) → 𝐵:ℕ0⟶ℚ) |
| 21 | 15, 18, 20 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → 𝐵:ℕ0⟶ℚ) |
| 22 | 21 | ffvelcdmda 7059 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝐵‘𝐾) ∈ ℚ) |
| 23 | qmulz 12917 | . . . . . 6 ⊢ ((𝐵‘𝐾) ∈ ℚ → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
| 24 | 22, 23 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) |
| 25 | rabn0 4355 | . . . . 5 ⊢ ({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅ ↔ ∃𝑛 ∈ ℕ ((𝐵‘𝐾) · 𝑛) ∈ ℤ) | |
| 26 | 24, 25 | sylibr 234 | . . . 4 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) |
| 27 | infssuzcl 12898 | . . . 4 ⊢ (({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ⊆ (ℤ≥‘1) ∧ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ≠ ∅) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) | |
| 28 | 13, 26, 27 | sylancr 587 | . . 3 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → inf({𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}, ℝ, < ) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
| 29 | 10, 28 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → (𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ}) |
| 30 | oveq2 7398 | . . . 4 ⊢ (𝑛 = (𝑁‘𝐾) → ((𝐵‘𝐾) · 𝑛) = ((𝐵‘𝐾) · (𝑁‘𝐾))) | |
| 31 | 30 | eleq1d 2814 | . . 3 ⊢ (𝑛 = (𝑁‘𝐾) → (((𝐵‘𝐾) · 𝑛) ∈ ℤ ↔ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
| 32 | 31 | elrab 3662 | . 2 ⊢ ((𝑁‘𝐾) ∈ {𝑛 ∈ ℕ ∣ ((𝐵‘𝐾) · 𝑛) ∈ ℤ} ↔ ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
| 33 | 29, 32 | sylib 218 | 1 ⊢ ((𝜑 ∧ 𝐾 ∈ ℕ0) → ((𝑁‘𝐾) ∈ ℕ ∧ ((𝐵‘𝐾) · (𝑁‘𝐾)) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 ∖ cdif 3914 ⊆ wss 3917 ∅c0 4299 {csn 4592 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 infcinf 9399 ℂcc 11073 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ℚcq 12914 seqcseq 13973 0𝑝c0p 25577 Polycply 26096 coeffccoe 26098 degcdgr 26099 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-rlim 15462 df-sum 15660 df-0p 25578 df-ply 26100 df-coe 26102 |
| This theorem is referenced by: elqaalem2 26235 |
| Copyright terms: Public domain | W3C validator |