MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoval Structured version   Visualization version   GIF version

Theorem nmoval 24619
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
Distinct variable groups:   𝑥,𝑟,𝐿   𝑀,𝑟,𝑥   𝑆,𝑟,𝑥   𝑇,𝑟,𝑥   𝐹,𝑟,𝑥   𝑉,𝑟,𝑥   𝑁,𝑟,𝑥

Proof of Theorem nmoval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . . 5 𝑁 = (𝑆 normOp 𝑇)
2 nmofval.2 . . . . 5 𝑉 = (Base‘𝑆)
3 nmofval.3 . . . . 5 𝐿 = (norm‘𝑆)
4 nmofval.4 . . . . 5 𝑀 = (norm‘𝑇)
51, 2, 3, 4nmofval 24618 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
65fveq1d 6893 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁𝐹) = ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))‘𝐹))
7 fveq1 6890 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
87fveq2d 6895 . . . . . . . 8 (𝑓 = 𝐹 → (𝑀‘(𝑓𝑥)) = (𝑀‘(𝐹𝑥)))
98breq1d 5152 . . . . . . 7 (𝑓 = 𝐹 → ((𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))))
109ralbidv 3172 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))))
1110rabbidv 3435 . . . . 5 (𝑓 = 𝐹 → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))})
1211infeq1d 9492 . . . 4 (𝑓 = 𝐹 → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
13 eqid 2727 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
14 xrltso 13144 . . . . 5 < Or ℝ*
1514infex 9508 . . . 4 inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ V
1612, 13, 15fvmpt 6999 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
176, 16sylan9eq 2787 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
18173impa 1108 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  {crab 3427   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  infcinf 9456  0cc0 11130   · cmul 11135  +∞cpnf 11267  *cxr 11269   < clt 11270  cle 11271  [,)cico 13350  Basecbs 17171   GrpHom cghm 19158  normcnm 24472  NrmGrpcngp 24473   normOp cnmo 24609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-ico 13354  df-nmo 24612
This theorem is referenced by:  nmogelb  24620  nmolb  24621
  Copyright terms: Public domain W3C validator