| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmoval | Structured version Visualization version GIF version | ||
| Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.) |
| Ref | Expression |
|---|---|
| nmofval.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmofval.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmofval.3 | ⊢ 𝐿 = (norm‘𝑆) |
| nmofval.4 | ⊢ 𝑀 = (norm‘𝑇) |
| Ref | Expression |
|---|---|
| nmoval | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | . . . . 5 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | nmofval.2 | . . . . 5 ⊢ 𝑉 = (Base‘𝑆) | |
| 3 | nmofval.3 | . . . . 5 ⊢ 𝐿 = (norm‘𝑆) | |
| 4 | nmofval.4 | . . . . 5 ⊢ 𝑀 = (norm‘𝑇) | |
| 5 | 1, 2, 3, 4 | nmofval 24735 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))) |
| 6 | 5 | fveq1d 6908 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘𝐹) = ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))‘𝐹)) |
| 7 | fveq1 6905 | . . . . . . . . 9 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 8 | 7 | fveq2d 6910 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑀‘(𝑓‘𝑥)) = (𝑀‘(𝐹‘𝑥))) |
| 9 | 8 | breq1d 5153 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) ↔ (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
| 10 | 9 | ralbidv 3178 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)) ↔ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥)))) |
| 11 | 10 | rabbidv 3444 | . . . . 5 ⊢ (𝑓 = 𝐹 → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}) |
| 12 | 11 | infeq1d 9517 | . . . 4 ⊢ (𝑓 = 𝐹 → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| 13 | eqid 2737 | . . . 4 ⊢ (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) | |
| 14 | xrltso 13183 | . . . . 5 ⊢ < Or ℝ* | |
| 15 | 14 | infex 9533 | . . . 4 ⊢ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ) ∈ V |
| 16 | 12, 13, 15 | fvmpt 7016 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝑓‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < ))‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| 17 | 6, 16 | sylan9eq 2797 | . 2 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| 18 | 17 | 3impa 1110 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ 𝑉 (𝑀‘(𝐹‘𝑥)) ≤ (𝑟 · (𝐿‘𝑥))}, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 {crab 3436 class class class wbr 5143 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 infcinf 9481 0cc0 11155 · cmul 11160 +∞cpnf 11292 ℝ*cxr 11294 < clt 11295 ≤ cle 11296 [,)cico 13389 Basecbs 17247 GrpHom cghm 19230 normcnm 24589 NrmGrpcngp 24590 normOp cnmo 24726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-ico 13393 df-nmo 24729 |
| This theorem is referenced by: nmogelb 24737 nmolb 24738 |
| Copyright terms: Public domain | W3C validator |