MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmoval Structured version   Visualization version   GIF version

Theorem nmoval 23469
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015.) (Revised by AV, 26-Sep-2020.)
Hypotheses
Ref Expression
nmofval.1 𝑁 = (𝑆 normOp 𝑇)
nmofval.2 𝑉 = (Base‘𝑆)
nmofval.3 𝐿 = (norm‘𝑆)
nmofval.4 𝑀 = (norm‘𝑇)
Assertion
Ref Expression
nmoval ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
Distinct variable groups:   𝑥,𝑟,𝐿   𝑀,𝑟,𝑥   𝑆,𝑟,𝑥   𝑇,𝑟,𝑥   𝐹,𝑟,𝑥   𝑉,𝑟,𝑥   𝑁,𝑟,𝑥

Proof of Theorem nmoval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 nmofval.1 . . . . 5 𝑁 = (𝑆 normOp 𝑇)
2 nmofval.2 . . . . 5 𝑉 = (Base‘𝑆)
3 nmofval.3 . . . . 5 𝐿 = (norm‘𝑆)
4 nmofval.4 . . . . 5 𝑀 = (norm‘𝑇)
51, 2, 3, 4nmofval 23468 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑁 = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )))
65fveq1d 6677 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁𝐹) = ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))‘𝐹))
7 fveq1 6674 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
87fveq2d 6679 . . . . . . . 8 (𝑓 = 𝐹 → (𝑀‘(𝑓𝑥)) = (𝑀‘(𝐹𝑥)))
98breq1d 5041 . . . . . . 7 (𝑓 = 𝐹 → ((𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))))
109ralbidv 3109 . . . . . 6 (𝑓 = 𝐹 → (∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥)) ↔ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))))
1110rabbidv 3381 . . . . 5 (𝑓 = 𝐹 → {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))} = {𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))})
1211infeq1d 9015 . . . 4 (𝑓 = 𝐹 → inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
13 eqid 2738 . . . 4 (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < )) = (𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
14 xrltso 12618 . . . . 5 < Or ℝ*
1514infex 9031 . . . 4 inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ) ∈ V
1612, 13, 15fvmpt 6776 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ((𝑓 ∈ (𝑆 GrpHom 𝑇) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝑓𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))‘𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
176, 16sylan9eq 2793 . 2 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
18173impa 1111 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → (𝑁𝐹) = inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥𝑉 (𝑀‘(𝐹𝑥)) ≤ (𝑟 · (𝐿𝑥))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2113  wral 3053  {crab 3057   class class class wbr 5031  cmpt 5111  cfv 6340  (class class class)co 7171  infcinf 8979  0cc0 10616   · cmul 10621  +∞cpnf 10751  *cxr 10753   < clt 10754  cle 10755  [,)cico 12824  Basecbs 16587   GrpHom cghm 18474  normcnm 23330  NrmGrpcngp 23331   normOp cnmo 23459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480  ax-cnex 10672  ax-resscn 10673  ax-1cn 10674  ax-icn 10675  ax-addcl 10676  ax-addrcl 10677  ax-mulcl 10678  ax-mulrcl 10679  ax-mulcom 10680  ax-addass 10681  ax-mulass 10682  ax-distr 10683  ax-i2m1 10684  ax-1ne0 10685  ax-1rid 10686  ax-rnegex 10687  ax-rrecex 10688  ax-cnre 10689  ax-pre-lttri 10690  ax-pre-lttrn 10691  ax-pre-ltadd 10692  ax-pre-mulgt0 10693  ax-pre-sup 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7128  df-ov 7174  df-oprab 7175  df-mpo 7176  df-1st 7715  df-2nd 7716  df-er 8321  df-en 8557  df-dom 8558  df-sdom 8559  df-sup 8980  df-inf 8981  df-pnf 10756  df-mnf 10757  df-xr 10758  df-ltxr 10759  df-le 10760  df-sub 10951  df-neg 10952  df-ico 12828  df-nmo 23462
This theorem is referenced by:  nmogelb  23470  nmolb  23471
  Copyright terms: Public domain W3C validator