![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsval | Structured version Visualization version GIF version |
Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) | |
2 | 1 | mpteq2dv 5250 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))) |
3 | 2 | rneqd 5952 | . . 3 ⊢ (𝑥 = 𝐴 → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))) |
4 | 3 | infeq1d 9515 | . 2 ⊢ (𝑥 = 𝐴 → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
5 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
6 | xrltso 13180 | . . 3 ⊢ < Or ℝ* | |
7 | 6 | infex 9531 | . 2 ⊢ inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ↦ cmpt 5231 ran crn 5690 ‘cfv 6563 (class class class)co 7431 infcinf 9479 ℝ*cxr 11292 < clt 11293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 |
This theorem is referenced by: metdsge 24885 lebnumlem1 25007 lebnumlem3 25009 |
Copyright terms: Public domain | W3C validator |