![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsval | Structured version Visualization version GIF version |
Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsval | ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7365 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦)) | |
2 | 1 | mpteq2dv 5208 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))) |
3 | 2 | rneqd 5894 | . . 3 ⊢ (𝑥 = 𝐴 → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦))) |
4 | 3 | infeq1d 9418 | . 2 ⊢ (𝑥 = 𝐴 → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
5 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
6 | xrltso 13066 | . . 3 ⊢ < Or ℝ* | |
7 | 6 | infex 9434 | . 2 ⊢ inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ∈ V |
8 | 4, 5, 7 | fvmpt 6949 | 1 ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = inf(ran (𝑦 ∈ 𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ↦ cmpt 5189 ran crn 5635 ‘cfv 6497 (class class class)co 7358 infcinf 9382 ℝ*cxr 11193 < clt 11194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-pre-lttri 11130 ax-pre-lttrn 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-sup 9383 df-inf 9384 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 |
This theorem is referenced by: metdsge 24228 lebnumlem1 24340 lebnumlem3 24342 |
Copyright terms: Public domain | W3C validator |