MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsval Structured version   Visualization version   GIF version

Theorem metdsval 24764
Description: Value of the "distance to a set" function. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsval (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsval
StepHypRef Expression
1 oveq1 7359 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐷𝑦) = (𝐴𝐷𝑦))
21mpteq2dv 5187 . . . 4 (𝑥 = 𝐴 → (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝐴𝐷𝑦)))
32rneqd 5882 . . 3 (𝑥 = 𝐴 → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)))
43infeq1d 9369 . 2 (𝑥 = 𝐴 → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
5 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
6 xrltso 13042 . . 3 < Or ℝ*
76infex 9386 . 2 inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ) ∈ V
84, 5, 7fvmpt 6935 1 (𝐴𝑋 → (𝐹𝐴) = inf(ran (𝑦𝑆 ↦ (𝐴𝐷𝑦)), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cmpt 5174  ran crn 5620  cfv 6486  (class class class)co 7352  infcinf 9332  *cxr 11152   < clt 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158
This theorem is referenced by:  metdsge  24766  lebnumlem1  24888  lebnumlem3  24890
  Copyright terms: Public domain W3C validator