| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd)) | 
| 2 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑁) =
(Base‘𝑁) | 
| 3 |  | 0mhm.z | . . . . . 6
⊢  0 =
(0g‘𝑁) | 
| 4 | 2, 3 | mndidcl 18762 | . . . . 5
⊢ (𝑁 ∈ Mnd → 0 ∈
(Base‘𝑁)) | 
| 5 | 4 | adantl 481 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈
(Base‘𝑁)) | 
| 6 |  | fconst6g 6797 | . . . 4
⊢ ( 0 ∈
(Base‘𝑁) →
(𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) | 
| 7 | 5, 6 | syl 17 | . . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁)) | 
| 8 |  | simpr 484 | . . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd) | 
| 9 |  | eqid 2737 | . . . . . . . . 9
⊢
(+g‘𝑁) = (+g‘𝑁) | 
| 10 | 2, 9, 3 | mndlid 18767 | . . . . . . . 8
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) → (
0
(+g‘𝑁)
0 ) =
0
) | 
| 11 | 10 | eqcomd 2743 | . . . . . . 7
⊢ ((𝑁 ∈ Mnd ∧ 0 ∈
(Base‘𝑁)) →
0 = (
0
(+g‘𝑁)
0
)) | 
| 12 | 8, 4, 11 | syl2anc2 585 | . . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0
(+g‘𝑁)
0
)) | 
| 13 | 12 | adantr 480 | . . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 0 = ( 0 (+g‘𝑁) 0 )) | 
| 14 |  | 0mhm.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝑀) | 
| 15 |  | eqid 2737 | . . . . . . . . 9
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 16 | 14, 15 | mndcl 18755 | . . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) | 
| 17 | 16 | 3expb 1121 | . . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) | 
| 18 | 17 | adantlr 715 | . . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝑀)𝑦) ∈ 𝐵) | 
| 19 | 3 | fvexi 6920 | . . . . . . 7
⊢  0 ∈
V | 
| 20 | 19 | fvconst2 7224 | . . . . . 6
⊢ ((𝑥(+g‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) | 
| 21 | 18, 20 | syl 17 | . . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = 0 ) | 
| 22 | 19 | fvconst2 7224 | . . . . . . 7
⊢ (𝑥 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑥) = 0 ) | 
| 23 | 19 | fvconst2 7224 | . . . . . . 7
⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) | 
| 24 | 22, 23 | oveqan12d 7450 | . . . . . 6
⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g‘𝑁) 0 )) | 
| 25 | 24 | adantl 481 | . . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g‘𝑁) 0 )) | 
| 26 | 13, 21, 25 | 3eqtr4d 2787 | . . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) | 
| 27 | 26 | ralrimivva 3202 | . . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦))) | 
| 28 |  | eqid 2737 | . . . . . 6
⊢
(0g‘𝑀) = (0g‘𝑀) | 
| 29 | 14, 28 | mndidcl 18762 | . . . . 5
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) | 
| 30 | 29 | adantr 480 | . . . 4
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) →
(0g‘𝑀)
∈ 𝐵) | 
| 31 | 19 | fvconst2 7224 | . . . 4
⊢
((0g‘𝑀) ∈ 𝐵 → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) | 
| 32 | 30, 31 | syl 17 | . . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ) | 
| 33 | 7, 27, 32 | 3jca 1129 | . 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 )) | 
| 34 | 14, 2, 15, 9, 28, 3 | ismhm 18798 | . 2
⊢ ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝐵 × { 0 })‘(𝑥(+g‘𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g‘𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0
})‘(0g‘𝑀)) = 0 ))) | 
| 35 | 1, 33, 34 | sylanbrc 583 | 1
⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |