MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mhm Structured version   Visualization version   GIF version

Theorem 0mhm 18373
Description: The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
0mhm.z 0 = (0g𝑁)
0mhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
0mhm ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))

Proof of Theorem 0mhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd))
2 eqid 2738 . . . . . 6 (Base‘𝑁) = (Base‘𝑁)
3 0mhm.z . . . . . 6 0 = (0g𝑁)
42, 3mndidcl 18315 . . . . 5 (𝑁 ∈ Mnd → 0 ∈ (Base‘𝑁))
54adantl 481 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 ∈ (Base‘𝑁))
6 fconst6g 6647 . . . 4 ( 0 ∈ (Base‘𝑁) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
75, 6syl 17 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }):𝐵⟶(Base‘𝑁))
8 simpr 484 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 𝑁 ∈ Mnd)
9 eqid 2738 . . . . . . . . 9 (+g𝑁) = (+g𝑁)
102, 9, 3mndlid 18320 . . . . . . . 8 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → ( 0 (+g𝑁) 0 ) = 0 )
1110eqcomd 2744 . . . . . . 7 ((𝑁 ∈ Mnd ∧ 0 ∈ (Base‘𝑁)) → 0 = ( 0 (+g𝑁) 0 ))
128, 4, 11syl2anc2 584 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → 0 = ( 0 (+g𝑁) 0 ))
1312adantr 480 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → 0 = ( 0 (+g𝑁) 0 ))
14 0mhm.b . . . . . . . . 9 𝐵 = (Base‘𝑀)
15 eqid 2738 . . . . . . . . 9 (+g𝑀) = (+g𝑀)
1614, 15mndcl 18308 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
17163expb 1118 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
1817adantlr 711 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
193fvexi 6770 . . . . . . 7 0 ∈ V
2019fvconst2 7061 . . . . . 6 ((𝑥(+g𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
2118, 20syl 17 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = 0 )
2219fvconst2 7061 . . . . . . 7 (𝑥𝐵 → ((𝐵 × { 0 })‘𝑥) = 0 )
2319fvconst2 7061 . . . . . . 7 (𝑦𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 )
2422, 23oveqan12d 7274 . . . . . 6 ((𝑥𝐵𝑦𝐵) → (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g𝑁) 0 ))
2524adantl 481 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) = ( 0 (+g𝑁) 0 ))
2613, 21, 253eqtr4d 2788 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
2726ralrimivva 3114 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)))
28 eqid 2738 . . . . . 6 (0g𝑀) = (0g𝑀)
2914, 28mndidcl 18315 . . . . 5 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
3029adantr 480 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (0g𝑀) ∈ 𝐵)
3119fvconst2 7061 . . . 4 ((0g𝑀) ∈ 𝐵 → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
3230, 31syl 17 . . 3 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 })‘(0g𝑀)) = 0 )
337, 27, 323jca 1126 . 2 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 ))
3414, 2, 15, 9, 28, 3ismhm 18347 . 2 ((𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁) ↔ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) ∧ ((𝐵 × { 0 }):𝐵⟶(Base‘𝑁) ∧ ∀𝑥𝐵𝑦𝐵 ((𝐵 × { 0 })‘(𝑥(+g𝑀)𝑦)) = (((𝐵 × { 0 })‘𝑥)(+g𝑁)((𝐵 × { 0 })‘𝑦)) ∧ ((𝐵 × { 0 })‘(0g𝑀)) = 0 )))
351, 33, 34sylanbrc 582 1 ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  {csn 4558   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345
This theorem is referenced by:  0ghm  18763
  Copyright terms: Public domain W3C validator