| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfcls2 | Structured version Visualization version GIF version | ||
| Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| isfcls2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop 22831 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
| 2 | toponuni 22832 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
| 3 | 2 | fveq2d 6834 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
| 4 | 3 | eleq2d 2819 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
| 5 | 4 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 6 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 7 | 6 | isfcls 23927 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| 8 | df-3an 1088 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | |
| 9 | 7, 8 | bitri 275 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| 10 | 9 | baib 535 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| 11 | 1, 5, 10 | syl2an2r 685 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 ∪ cuni 4860 ‘cfv 6488 (class class class)co 7354 Topctop 22811 TopOnctopon 22828 clsccl 22936 Filcfil 23763 fClus cfcls 23854 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-fbas 21292 df-topon 22829 df-fil 23764 df-fcls 23859 |
| This theorem is referenced by: fclsopn 23932 fclsss2 23941 |
| Copyright terms: Public domain | W3C validator |