![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfcls2 | Structured version Visualization version GIF version |
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isfcls2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22940 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | toponuni 22941 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
3 | 2 | fveq2d 6924 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
4 | 3 | eleq2d 2830 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
5 | 4 | biimpa 476 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
6 | eqid 2740 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 6 | isfcls 24038 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
8 | df-3an 1089 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | |
9 | 7, 8 | bitri 275 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
10 | 9 | baib 535 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
11 | 1, 5, 10 | syl2an2r 684 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 Topctop 22920 TopOnctopon 22937 clsccl 23047 Filcfil 23874 fClus cfcls 23965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-topon 22938 df-fil 23875 df-fcls 23970 |
This theorem is referenced by: fclsopn 24043 fclsss2 24052 |
Copyright terms: Public domain | W3C validator |