MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcls2 Structured version   Visualization version   GIF version

Theorem isfcls2 23929
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
isfcls2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Distinct variable groups:   𝐴,𝑠   𝐹,𝑠   𝐽,𝑠   𝑋,𝑠

Proof of Theorem isfcls2
StepHypRef Expression
1 topontop 22829 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2 toponuni 22830 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
32fveq2d 6826 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘ 𝐽))
43eleq2d 2817 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘ 𝐽)))
54biimpa 476 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘ 𝐽))
6 eqid 2731 . . . . 5 𝐽 = 𝐽
76isfcls 23925 . . . 4 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
8 df-3an 1088 . . . 4 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
97, 8bitri 275 . . 3 (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) ∧ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
109baib 535 . 2 ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
111, 5, 10syl2an2r 685 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wral 3047   cuni 4859  cfv 6481  (class class class)co 7346  Topctop 22809  TopOnctopon 22826  clsccl 22934  Filcfil 23761   fClus cfcls 23852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-fbas 21289  df-topon 22827  df-fil 23762  df-fcls 23857
This theorem is referenced by:  fclsopn  23930  fclsss2  23939
  Copyright terms: Public domain W3C validator