![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isfcls2 | Structured version Visualization version GIF version |
Description: A cluster point of a filter. (Contributed by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
isfcls2 | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | topontop 22344 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | |
2 | toponuni 22345 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) | |
3 | 2 | fveq2d 6882 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
4 | 3 | eleq2d 2818 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ↔ 𝐹 ∈ (Fil‘∪ 𝐽))) |
5 | 4 | biimpa 477 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
6 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
7 | 6 | isfcls 23442 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
8 | df-3an 1089 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠)) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) | |
9 | 7, 8 | bitri 274 | . . 3 ⊢ (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) ∧ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
10 | 9 | baib 536 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
11 | 1, 5, 10 | syl2an2r 683 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝐴 ∈ ((cls‘𝐽)‘𝑠))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 ∀wral 3060 ∪ cuni 4901 ‘cfv 6532 (class class class)co 7393 Topctop 22324 TopOnctopon 22341 clsccl 22451 Filcfil 23278 fClus cfcls 23369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4944 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-fbas 20875 df-topon 22342 df-fil 23279 df-fcls 23374 |
This theorem is referenced by: fclsopn 23447 fclsss2 23456 |
Copyright terms: Public domain | W3C validator |