MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsss2 Structured version   Visualization version   GIF version

Theorem fclsss2 22630
Description: A finer filter has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsss2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))

Proof of Theorem fclsss2
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1189 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹𝐺)
2 ssralv 4032 . . . . . 6 (𝐹𝐺 → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
31, 2syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
4 simpl1 1187 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐽 ∈ (TopOn‘𝑋))
5 fclstopon 22619 . . . . . . . 8 (𝑥 ∈ (𝐽 fClus 𝐺) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
65adantl 484 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋)))
74, 6mpbid 234 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐺 ∈ (Fil‘𝑋))
8 isfcls2 22620 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
94, 7, 8syl2anc 586 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
10 simpl2 1188 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ∈ (Fil‘𝑋))
11 isfcls2 22620 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
124, 10, 11syl2anc 586 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠)))
133, 9, 123imtr4d 296 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1413ex 415 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))))
1514pm2.43d 53 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1615ssrdv 3972 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2110  wral 3138  wss 3935  cfv 6354  (class class class)co 7155  TopOnctopon 21517  clsccl 21625  Filcfil 22452   fClus cfcls 22543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-int 4876  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-fbas 20541  df-topon 21518  df-fil 22453  df-fcls 22548
This theorem is referenced by:  fclsfnflim  22634  ufilcmp  22639  cnpfcfi  22647
  Copyright terms: Public domain W3C validator