Step | Hyp | Ref
| Expression |
1 | | simpl3 1190 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ⊆ 𝐺) |
2 | | ssralv 3958 |
. . . . . 6
⊢ (𝐹 ⊆ 𝐺 → (∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
3 | 1, 2 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
4 | | simpl1 1188 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | fclstopon 22712 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐽 fClus 𝐺) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋))) |
6 | 5 | adantl 485 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋))) |
7 | 4, 6 | mpbid 235 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐺 ∈ (Fil‘𝑋)) |
8 | | isfcls2 22713 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
9 | 4, 7, 8 | syl2anc 587 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
10 | | simpl2 1189 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ∈ (Fil‘𝑋)) |
11 | | isfcls2 22713 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
12 | 4, 10, 11 | syl2anc 587 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) |
13 | 3, 9, 12 | 3imtr4d 297 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))) |
14 | 13 | ex 416 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))) |
15 | 14 | pm2.43d 53 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))) |
16 | 15 | ssrdv 3898 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹)) |