Step | Hyp | Ref
| Expression |
1 | | simpl3 1191 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β πΉ β πΊ) |
2 | | ssralv 4049 |
. . . . . 6
β’ (πΉ β πΊ β (βπ β πΊ π₯ β ((clsβπ½)βπ ) β βπ β πΉ π₯ β ((clsβπ½)βπ ))) |
3 | 1, 2 | syl 17 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β (βπ β πΊ π₯ β ((clsβπ½)βπ ) β βπ β πΉ π₯ β ((clsβπ½)βπ ))) |
4 | | simpl1 1189 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β π½ β (TopOnβπ)) |
5 | | fclstopon 23736 |
. . . . . . . 8
β’ (π₯ β (π½ fClus πΊ) β (π½ β (TopOnβπ) β πΊ β (Filβπ))) |
6 | 5 | adantl 480 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β (π½ β (TopOnβπ) β πΊ β (Filβπ))) |
7 | 4, 6 | mpbid 231 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β πΊ β (Filβπ)) |
8 | | isfcls2 23737 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ πΊ β (Filβπ)) β (π₯ β (π½ fClus πΊ) β βπ β πΊ π₯ β ((clsβπ½)βπ ))) |
9 | 4, 7, 8 | syl2anc 582 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β (π₯ β (π½ fClus πΊ) β βπ β πΊ π₯ β ((clsβπ½)βπ ))) |
10 | | simpl2 1190 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β πΉ β (Filβπ)) |
11 | | isfcls2 23737 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π₯ β (π½ fClus πΉ) β βπ β πΉ π₯ β ((clsβπ½)βπ ))) |
12 | 4, 10, 11 | syl2anc 582 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β (π₯ β (π½ fClus πΉ) β βπ β πΉ π₯ β ((clsβπ½)βπ ))) |
13 | 3, 9, 12 | 3imtr4d 293 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β§ π₯ β (π½ fClus πΊ)) β (π₯ β (π½ fClus πΊ) β π₯ β (π½ fClus πΉ))) |
14 | 13 | ex 411 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β (π₯ β (π½ fClus πΊ) β (π₯ β (π½ fClus πΊ) β π₯ β (π½ fClus πΉ)))) |
15 | 14 | pm2.43d 53 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β (π₯ β (π½ fClus πΊ) β π₯ β (π½ fClus πΉ))) |
16 | 15 | ssrdv 3987 |
1
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ πΉ β πΊ) β (π½ fClus πΊ) β (π½ fClus πΉ)) |