| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl3 1193 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ⊆ 𝐺) | 
| 2 |  | ssralv 4051 | . . . . . 6
⊢ (𝐹 ⊆ 𝐺 → (∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 3 | 1, 2 | syl 17 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠) → ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 4 |  | simpl1 1191 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 5 |  | fclstopon 24021 | . . . . . . . 8
⊢ (𝑥 ∈ (𝐽 fClus 𝐺) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋))) | 
| 6 | 5 | adantl 481 | . . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝐽 ∈ (TopOn‘𝑋) ↔ 𝐺 ∈ (Fil‘𝑋))) | 
| 7 | 4, 6 | mpbid 232 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐺 ∈ (Fil‘𝑋)) | 
| 8 |  | isfcls2 24022 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 9 | 4, 7, 8 | syl2anc 584 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) ↔ ∀𝑠 ∈ 𝐺 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 10 |  | simpl2 1192 | . . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → 𝐹 ∈ (Fil‘𝑋)) | 
| 11 |  | isfcls2 24022 | . . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 12 | 4, 10, 11 | syl2anc 584 | . . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ ∀𝑠 ∈ 𝐹 𝑥 ∈ ((cls‘𝐽)‘𝑠))) | 
| 13 | 3, 9, 12 | 3imtr4d 294 | . . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) ∧ 𝑥 ∈ (𝐽 fClus 𝐺)) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))) | 
| 14 | 13 | ex 412 | . . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹)))) | 
| 15 | 14 | pm2.43d 53 | . 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝑥 ∈ (𝐽 fClus 𝐺) → 𝑥 ∈ (𝐽 fClus 𝐹))) | 
| 16 | 15 | ssrdv 3988 | 1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐹 ⊆ 𝐺) → (𝐽 fClus 𝐺) ⊆ (𝐽 fClus 𝐹)) |