Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr0uhgr Structured version   Visualization version   GIF version

Theorem isubgr0uhgr 47903
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.)
Assertion
Ref Expression
isubgr0uhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)

Proof of Theorem isubgr0uhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ss 4350 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2731 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3isisubgr 47892 . . 3 ((𝐺 ∈ UHGraph ∧ ∅ ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
51, 4mpan2 691 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
6 inrab2 4267 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
7 inidm 4177 . . . . . . . . 9 (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) = dom (iEdg‘𝐺)
87rabeqi 3408 . . . . . . . 8 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
9 ss0b 4351 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) ⊆ ∅ ↔ ((iEdg‘𝐺)‘𝑥) = ∅)
108, 9rabbieq 3403 . . . . . . 7 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
116, 10eqtri 2754 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
1211ineqcomi 4161 . . . . 5 (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
132, 3uhgrf 29038 . . . . . . . 8 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
14 ffvelcdm 7014 . . . . . . . . . 10 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsni 4742 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1614, 15syl 17 . . . . . . . . 9 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1716neneqd 2933 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1813, 17sylan 580 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1918ralrimiva 3124 . . . . . 6 (𝐺 ∈ UHGraph → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
20 rabeq0 4338 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
2119, 20sylibr 234 . . . . 5 (𝐺 ∈ UHGraph → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅)
2212, 21eqtrid 2778 . . . 4 (𝐺 ∈ UHGraph → (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
233uhgrfun 29042 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423funfnd 6512 . . . . 5 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
25 fnresdisj 6601 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2624, 25syl 17 . . . 4 (𝐺 ∈ UHGraph → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2722, 26mpbid 232 . . 3 (𝐺 ∈ UHGraph → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
2827opeq2d 4832 . 2 (𝐺 ∈ UHGraph → ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩ = ⟨∅, ∅⟩)
295, 28eqtrd 2766 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  {crab 3395  cdif 3899  cin 3901  wss 3902  c0 4283  𝒫 cpw 4550  {csn 4576  cop 4582  dom cdm 5616  cres 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  Vtxcvtx 28972  iEdgciedg 28973  UHGraphcuhgr 29032   ISubGr cisubgr 47890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-uhgr 29034  df-isubgr 47891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator