Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr0uhgr Structured version   Visualization version   GIF version

Theorem isubgr0uhgr 47886
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.)
Assertion
Ref Expression
isubgr0uhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)

Proof of Theorem isubgr0uhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ss 4375 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2735 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3isisubgr 47875 . . 3 ((𝐺 ∈ UHGraph ∧ ∅ ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
51, 4mpan2 691 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
6 inrab2 4292 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
7 inidm 4202 . . . . . . . . 9 (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) = dom (iEdg‘𝐺)
87rabeqi 3429 . . . . . . . 8 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
9 ss0b 4376 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) ⊆ ∅ ↔ ((iEdg‘𝐺)‘𝑥) = ∅)
108, 9rabbieq 3424 . . . . . . 7 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
116, 10eqtri 2758 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
1211ineqcomi 4186 . . . . 5 (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
132, 3uhgrf 29041 . . . . . . . 8 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
14 ffvelcdm 7071 . . . . . . . . . 10 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsni 4766 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1614, 15syl 17 . . . . . . . . 9 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1716neneqd 2937 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1813, 17sylan 580 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1918ralrimiva 3132 . . . . . 6 (𝐺 ∈ UHGraph → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
20 rabeq0 4363 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
2119, 20sylibr 234 . . . . 5 (𝐺 ∈ UHGraph → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅)
2212, 21eqtrid 2782 . . . 4 (𝐺 ∈ UHGraph → (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
233uhgrfun 29045 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423funfnd 6567 . . . . 5 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
25 fnresdisj 6658 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2624, 25syl 17 . . . 4 (𝐺 ∈ UHGraph → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2722, 26mpbid 232 . . 3 (𝐺 ∈ UHGraph → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
2827opeq2d 4856 . 2 (𝐺 ∈ UHGraph → ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩ = ⟨∅, ∅⟩)
295, 28eqtrd 2770 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607  dom cdm 5654  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  Vtxcvtx 28975  iEdgciedg 28976  UHGraphcuhgr 29035   ISubGr cisubgr 47873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-uhgr 29037  df-isubgr 47874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator