Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr0uhgr Structured version   Visualization version   GIF version

Theorem isubgr0uhgr 47998
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.)
Assertion
Ref Expression
isubgr0uhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)

Proof of Theorem isubgr0uhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ss 4349 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 eqid 2733 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2733 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3isisubgr 47987 . . 3 ((𝐺 ∈ UHGraph ∧ ∅ ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
51, 4mpan2 691 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
6 inrab2 4266 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
7 inidm 4176 . . . . . . . . 9 (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) = dom (iEdg‘𝐺)
87rabeqi 3409 . . . . . . . 8 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
9 ss0b 4350 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) ⊆ ∅ ↔ ((iEdg‘𝐺)‘𝑥) = ∅)
108, 9rabbieq 3404 . . . . . . 7 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
116, 10eqtri 2756 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
1211ineqcomi 4160 . . . . 5 (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
132, 3uhgrf 29042 . . . . . . . 8 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
14 ffvelcdm 7020 . . . . . . . . . 10 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsni 4741 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1614, 15syl 17 . . . . . . . . 9 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1716neneqd 2934 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1813, 17sylan 580 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1918ralrimiva 3125 . . . . . 6 (𝐺 ∈ UHGraph → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
20 rabeq0 4337 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
2119, 20sylibr 234 . . . . 5 (𝐺 ∈ UHGraph → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅)
2212, 21eqtrid 2780 . . . 4 (𝐺 ∈ UHGraph → (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
233uhgrfun 29046 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423funfnd 6517 . . . . 5 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
25 fnresdisj 6606 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2624, 25syl 17 . . . 4 (𝐺 ∈ UHGraph → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2722, 26mpbid 232 . . 3 (𝐺 ∈ UHGraph → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
2827opeq2d 4831 . 2 (𝐺 ∈ UHGraph → ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩ = ⟨∅, ∅⟩)
295, 28eqtrd 2768 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  cdif 3895  cin 3897  wss 3898  c0 4282  𝒫 cpw 4549  {csn 4575  cop 4581  dom cdm 5619  cres 5621   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Vtxcvtx 28976  iEdgciedg 28977  UHGraphcuhgr 29036   ISubGr cisubgr 47985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-uhgr 29038  df-isubgr 47986
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator