Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isubgr0uhgr Structured version   Visualization version   GIF version

Theorem isubgr0uhgr 47873
Description: The subgraph induced by an empty set of vertices of a hypergraph. (Contributed by AV, 13-May-2025.)
Assertion
Ref Expression
isubgr0uhgr (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)

Proof of Theorem isubgr0uhgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ss 4363 . . 3 ∅ ⊆ (Vtx‘𝐺)
2 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2729 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3isisubgr 47862 . . 3 ((𝐺 ∈ UHGraph ∧ ∅ ⊆ (Vtx‘𝐺)) → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
51, 4mpan2 691 . 2 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩)
6 inrab2 4280 . . . . . . 7 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
7 inidm 4190 . . . . . . . . 9 (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) = dom (iEdg‘𝐺)
87rabeqi 3419 . . . . . . . 8 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}
9 ss0b 4364 . . . . . . . 8 (((iEdg‘𝐺)‘𝑥) ⊆ ∅ ↔ ((iEdg‘𝐺)‘𝑥) = ∅)
108, 9rabbieq 3414 . . . . . . 7 {𝑥 ∈ (dom (iEdg‘𝐺) ∩ dom (iEdg‘𝐺)) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
116, 10eqtri 2752 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅} ∩ dom (iEdg‘𝐺)) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
1211ineqcomi 4174 . . . . 5 (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅}
132, 3uhgrf 28989 . . . . . . . 8 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}))
14 ffvelcdm 7053 . . . . . . . . . 10 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
15 eldifsni 4754 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑥) ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1614, 15syl 17 . . . . . . . . 9 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ((iEdg‘𝐺)‘𝑥) ≠ ∅)
1716neneqd 2930 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1813, 17sylan 580 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ dom (iEdg‘𝐺)) → ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
1918ralrimiva 3125 . . . . . 6 (𝐺 ∈ UHGraph → ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
20 rabeq0 4351 . . . . . 6 ({𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅ ↔ ∀𝑥 ∈ dom (iEdg‘𝐺) ¬ ((iEdg‘𝐺)‘𝑥) = ∅)
2119, 20sylibr 234 . . . . 5 (𝐺 ∈ UHGraph → {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = ∅} = ∅)
2212, 21eqtrid 2776 . . . 4 (𝐺 ∈ UHGraph → (dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
233uhgrfun 28993 . . . . . 6 (𝐺 ∈ UHGraph → Fun (iEdg‘𝐺))
2423funfnd 6547 . . . . 5 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
25 fnresdisj 6638 . . . . 5 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2624, 25syl 17 . . . 4 (𝐺 ∈ UHGraph → ((dom (iEdg‘𝐺) ∩ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅ ↔ ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅))
2722, 26mpbid 232 . . 3 (𝐺 ∈ UHGraph → ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅}) = ∅)
2827opeq2d 4844 . 2 (𝐺 ∈ UHGraph → ⟨∅, ((iEdg‘𝐺) ↾ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ ∅})⟩ = ⟨∅, ∅⟩)
295, 28eqtrd 2764 1 (𝐺 ∈ UHGraph → (𝐺 ISubGr ∅) = ⟨∅, ∅⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3405  cdif 3911  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563  {csn 4589  cop 4595  dom cdm 5638  cres 5640   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  iEdgciedg 28924  UHGraphcuhgr 28983   ISubGr cisubgr 47860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-uhgr 28985  df-isubgr 47861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator