| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlin.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| lmhmlin.b | ⊢ 𝐵 = (Base‘𝐾) |
| lmhmlin.e | ⊢ 𝐸 = (Base‘𝑆) |
| lmhmlin.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| lmhmlin.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmlin | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlin.k | . . . . . 6 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | lmhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | lmhmlin.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | lmhmlin.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | lmhmlin.n | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20983 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)))) |
| 9 | 8 | simp3d 1144 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))) |
| 10 | fvoveq1 7426 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏))) | |
| 11 | oveq1 7410 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑏))) | |
| 12 | 10, 11 | eqeq12d 2751 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)))) |
| 13 | oveq2 7411 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 14 | 13 | fveq2d 6879 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌))) |
| 15 | fveq2 6875 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝐹‘𝑏) = (𝐹‘𝑌)) | |
| 16 | 15 | oveq2d 7419 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑌))) |
| 17 | 14, 16 | eqeq12d 2751 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 18 | 12, 17 | rspc2v 3612 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 19 | 9, 18 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 20 | 19 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 Scalarcsca 17272 ·𝑠 cvsca 17273 GrpHom cghm 19193 LModclmod 20815 LMHom clmhm 20975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-lmhm 20978 |
| This theorem is referenced by: islmhm2 20994 lmhmco 20999 lmhmplusg 21000 lmhmvsca 21001 lmhmf1o 21002 lmhmima 21003 lmhmpreima 21004 reslmhm 21008 reslmhm2 21009 reslmhm2b 21010 lmhmeql 21011 ipass 21603 lindfmm 21785 nmoleub2lem3 25064 nmoleub3 25068 lmhmimasvsca 32980 lmhmqusker 33378 mendassa 43161 |
| Copyright terms: Public domain | W3C validator |