MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlin Structured version   Visualization version   GIF version

Theorem lmhmlin 20991
Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlin.k 𝐾 = (Scalar‘𝑆)
lmhmlin.b 𝐵 = (Base‘𝐾)
lmhmlin.e 𝐸 = (Base‘𝑆)
lmhmlin.m · = ( ·𝑠𝑆)
lmhmlin.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
lmhmlin ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌)))

Proof of Theorem lmhmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlin.k . . . . . 6 𝐾 = (Scalar‘𝑆)
2 eqid 2735 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
3 lmhmlin.b . . . . . 6 𝐵 = (Base‘𝐾)
4 lmhmlin.e . . . . . 6 𝐸 = (Base‘𝑆)
5 lmhmlin.m . . . . . 6 · = ( ·𝑠𝑆)
6 lmhmlin.n . . . . . 6 × = ( ·𝑠𝑇)
71, 2, 3, 4, 5, 6islmhm 20983 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)))))
87simprbi 496 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏))))
98simp3d 1144 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)))
10 fvoveq1 7426 . . . . 5 (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏)))
11 oveq1 7410 . . . . 5 (𝑎 = 𝑋 → (𝑎 × (𝐹𝑏)) = (𝑋 × (𝐹𝑏)))
1210, 11eqeq12d 2751 . . . 4 (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹𝑏))))
13 oveq2 7411 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
1413fveq2d 6879 . . . . 5 (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌)))
15 fveq2 6875 . . . . . 6 (𝑏 = 𝑌 → (𝐹𝑏) = (𝐹𝑌))
1615oveq2d 7419 . . . . 5 (𝑏 = 𝑌 → (𝑋 × (𝐹𝑏)) = (𝑋 × (𝐹𝑌)))
1714, 16eqeq12d 2751 . . . 4 (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
1812, 17rspc2v 3612 . . 3 ((𝑋𝐵𝑌𝐸) → (∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
199, 18syl5com 31 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
20193impib 1116 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  cfv 6530  (class class class)co 7403  Basecbs 17226  Scalarcsca 17272   ·𝑠 cvsca 17273   GrpHom cghm 19193  LModclmod 20815   LMHom clmhm 20975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-lmhm 20978
This theorem is referenced by:  islmhm2  20994  lmhmco  20999  lmhmplusg  21000  lmhmvsca  21001  lmhmf1o  21002  lmhmima  21003  lmhmpreima  21004  reslmhm  21008  reslmhm2  21009  reslmhm2b  21010  lmhmeql  21011  ipass  21603  lindfmm  21785  nmoleub2lem3  25064  nmoleub3  25068  lmhmimasvsca  32980  lmhmqusker  33378  mendassa  43161
  Copyright terms: Public domain W3C validator