![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmhmlin | Structured version Visualization version GIF version |
Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
Ref | Expression |
---|---|
lmhmlin.k | ⊢ 𝐾 = (Scalar‘𝑆) |
lmhmlin.b | ⊢ 𝐵 = (Base‘𝐾) |
lmhmlin.e | ⊢ 𝐸 = (Base‘𝑆) |
lmhmlin.m | ⊢ · = ( ·𝑠 ‘𝑆) |
lmhmlin.n | ⊢ × = ( ·𝑠 ‘𝑇) |
Ref | Expression |
---|---|
lmhmlin | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmhmlin.k | . . . . . 6 ⊢ 𝐾 = (Scalar‘𝑆) | |
2 | eqid 2731 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
3 | lmhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | lmhmlin.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑆) | |
5 | lmhmlin.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑆) | |
6 | lmhmlin.n | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑇) | |
7 | 1, 2, 3, 4, 5, 6 | islmhm 20545 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))))) |
8 | 7 | simprbi 497 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)))) |
9 | 8 | simp3d 1144 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))) |
10 | fvoveq1 7385 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏))) | |
11 | oveq1 7369 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑏))) | |
12 | 10, 11 | eqeq12d 2747 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)))) |
13 | oveq2 7370 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
14 | 13 | fveq2d 6851 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌))) |
15 | fveq2 6847 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝐹‘𝑏) = (𝐹‘𝑌)) | |
16 | 15 | oveq2d 7378 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑌))) |
17 | 14, 16 | eqeq12d 2747 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
18 | 12, 17 | rspc2v 3591 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
19 | 9, 18 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
20 | 19 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3060 ‘cfv 6501 (class class class)co 7362 Basecbs 17094 Scalarcsca 17150 ·𝑠 cvsca 17151 GrpHom cghm 19019 LModclmod 20378 LMHom clmhm 20537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3406 df-v 3448 df-sbc 3743 df-dif 3916 df-un 3918 df-in 3920 df-ss 3930 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6453 df-fun 6503 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-lmhm 20540 |
This theorem is referenced by: islmhm2 20556 lmhmco 20561 lmhmplusg 20562 lmhmvsca 20563 lmhmf1o 20564 lmhmima 20565 lmhmpreima 20566 reslmhm 20570 reslmhm2 20571 reslmhm2b 20572 lmhmeql 20573 ipass 21086 lindfmm 21270 nmoleub2lem3 24515 nmoleub3 24519 lmhmqusker 32273 mendassa 41579 |
Copyright terms: Public domain | W3C validator |