MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlin Structured version   Visualization version   GIF version

Theorem lmhmlin 20957
Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlin.k 𝐾 = (Scalar‘𝑆)
lmhmlin.b 𝐵 = (Base‘𝐾)
lmhmlin.e 𝐸 = (Base‘𝑆)
lmhmlin.m · = ( ·𝑠𝑆)
lmhmlin.n × = ( ·𝑠𝑇)
Assertion
Ref Expression
lmhmlin ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌)))

Proof of Theorem lmhmlin
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlin.k . . . . . 6 𝐾 = (Scalar‘𝑆)
2 eqid 2729 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
3 lmhmlin.b . . . . . 6 𝐵 = (Base‘𝐾)
4 lmhmlin.e . . . . . 6 𝐸 = (Base‘𝑆)
5 lmhmlin.m . . . . . 6 · = ( ·𝑠𝑆)
6 lmhmlin.n . . . . . 6 × = ( ·𝑠𝑇)
71, 2, 3, 4, 5, 6islmhm 20949 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)))))
87simprbi 496 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏))))
98simp3d 1144 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)))
10 fvoveq1 7376 . . . . 5 (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏)))
11 oveq1 7360 . . . . 5 (𝑎 = 𝑋 → (𝑎 × (𝐹𝑏)) = (𝑋 × (𝐹𝑏)))
1210, 11eqeq12d 2745 . . . 4 (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹𝑏))))
13 oveq2 7361 . . . . . 6 (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌))
1413fveq2d 6830 . . . . 5 (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌)))
15 fveq2 6826 . . . . . 6 (𝑏 = 𝑌 → (𝐹𝑏) = (𝐹𝑌))
1615oveq2d 7369 . . . . 5 (𝑏 = 𝑌 → (𝑋 × (𝐹𝑏)) = (𝑋 × (𝐹𝑌)))
1714, 16eqeq12d 2745 . . . 4 (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
1812, 17rspc2v 3590 . . 3 ((𝑋𝐵𝑌𝐸) → (∀𝑎𝐵𝑏𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
199, 18syl5com 31 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌))))
20193impib 1116 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝐵𝑌𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cfv 6486  (class class class)co 7353  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183   GrpHom cghm 19109  LModclmod 20781   LMHom clmhm 20941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-lmhm 20944
This theorem is referenced by:  islmhm2  20960  lmhmco  20965  lmhmplusg  20966  lmhmvsca  20967  lmhmf1o  20968  lmhmima  20969  lmhmpreima  20970  reslmhm  20974  reslmhm2  20975  reslmhm2b  20976  lmhmeql  20977  ipass  21570  lindfmm  21752  nmoleub2lem3  25031  nmoleub3  25035  lmhmimasvsca  33006  lmhmqusker  33364  mendassa  43163
  Copyright terms: Public domain W3C validator