| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlin.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| lmhmlin.b | ⊢ 𝐵 = (Base‘𝐾) |
| lmhmlin.e | ⊢ 𝐸 = (Base‘𝑆) |
| lmhmlin.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| lmhmlin.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmlin | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlin.k | . . . . . 6 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | eqid 2731 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | lmhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | lmhmlin.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | lmhmlin.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | lmhmlin.n | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20959 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)))) |
| 9 | 8 | simp3d 1144 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))) |
| 10 | fvoveq1 7369 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏))) | |
| 11 | oveq1 7353 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑏))) | |
| 12 | 10, 11 | eqeq12d 2747 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)))) |
| 13 | oveq2 7354 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 14 | 13 | fveq2d 6826 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌))) |
| 15 | fveq2 6822 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝐹‘𝑏) = (𝐹‘𝑌)) | |
| 16 | 15 | oveq2d 7362 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑌))) |
| 17 | 14, 16 | eqeq12d 2747 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 18 | 12, 17 | rspc2v 3588 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 19 | 9, 18 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 20 | 19 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 Scalarcsca 17161 ·𝑠 cvsca 17162 GrpHom cghm 19122 LModclmod 20791 LMHom clmhm 20951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-lmhm 20954 |
| This theorem is referenced by: islmhm2 20970 lmhmco 20975 lmhmplusg 20976 lmhmvsca 20977 lmhmf1o 20978 lmhmima 20979 lmhmpreima 20980 reslmhm 20984 reslmhm2 20985 reslmhm2b 20986 lmhmeql 20987 ipass 21580 lindfmm 21762 nmoleub2lem3 25040 nmoleub3 25044 lmhmimasvsca 33015 lmhmqusker 33377 mendassa 43222 |
| Copyright terms: Public domain | W3C validator |