| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmhmlin | Structured version Visualization version GIF version | ||
| Description: A homomorphism of left modules is 𝐾-linear. (Contributed by Stefan O'Rear, 1-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmhmlin.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| lmhmlin.b | ⊢ 𝐵 = (Base‘𝐾) |
| lmhmlin.e | ⊢ 𝐸 = (Base‘𝑆) |
| lmhmlin.m | ⊢ · = ( ·𝑠 ‘𝑆) |
| lmhmlin.n | ⊢ × = ( ·𝑠 ‘𝑇) |
| Ref | Expression |
|---|---|
| lmhmlin | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmlin.k | . . . . . 6 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 2 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 3 | lmhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | lmhmlin.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑆) | |
| 5 | lmhmlin.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 6 | lmhmlin.n | . . . . . 6 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | islmhm 20949 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ (Scalar‘𝑇) = 𝐾 ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)))) |
| 9 | 8 | simp3d 1144 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏))) |
| 10 | fvoveq1 7376 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑋 · 𝑏))) | |
| 11 | oveq1 7360 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑏))) | |
| 12 | 10, 11 | eqeq12d 2745 | . . . 4 ⊢ (𝑎 = 𝑋 → ((𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)))) |
| 13 | oveq2 7361 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝑋 · 𝑏) = (𝑋 · 𝑌)) | |
| 14 | 13 | fveq2d 6830 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝐹‘(𝑋 · 𝑏)) = (𝐹‘(𝑋 · 𝑌))) |
| 15 | fveq2 6826 | . . . . . 6 ⊢ (𝑏 = 𝑌 → (𝐹‘𝑏) = (𝐹‘𝑌)) | |
| 16 | 15 | oveq2d 7369 | . . . . 5 ⊢ (𝑏 = 𝑌 → (𝑋 × (𝐹‘𝑏)) = (𝑋 × (𝐹‘𝑌))) |
| 17 | 14, 16 | eqeq12d 2745 | . . . 4 ⊢ (𝑏 = 𝑌 → ((𝐹‘(𝑋 · 𝑏)) = (𝑋 × (𝐹‘𝑏)) ↔ (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 18 | 12, 17 | rspc2v 3590 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐸 (𝐹‘(𝑎 · 𝑏)) = (𝑎 × (𝐹‘𝑏)) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 19 | 9, 18 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌)))) |
| 20 | 19 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐸) → (𝐹‘(𝑋 · 𝑌)) = (𝑋 × (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 GrpHom cghm 19109 LModclmod 20781 LMHom clmhm 20941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-lmhm 20944 |
| This theorem is referenced by: islmhm2 20960 lmhmco 20965 lmhmplusg 20966 lmhmvsca 20967 lmhmf1o 20968 lmhmima 20969 lmhmpreima 20970 reslmhm 20974 reslmhm2 20975 reslmhm2b 20976 lmhmeql 20977 ipass 21570 lindfmm 21752 nmoleub2lem3 25031 nmoleub3 25035 lmhmimasvsca 33006 lmhmqusker 33364 mendassa 43163 |
| Copyright terms: Public domain | W3C validator |