| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
| islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
| islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
| islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
| islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
| islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
| 2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
| 5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
| 6 | 5 | ralrimivva 3178 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 7 | 3, 4, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
| 10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
| 11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | islmhm 20910 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 GrpHom cghm 19120 LModclmod 20742 LMHom clmhm 20902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-lmhm 20905 |
| This theorem is referenced by: 0lmhm 20923 idlmhm 20924 invlmhm 20925 lmhmco 20926 lmhmplusg 20927 lmhmvsca 20928 lmhmf1o 20929 reslmhm2 20936 reslmhm2b 20937 pwsdiaglmhm 20940 pwssplit3 20944 frlmup1 21683 imaslmhm 33301 quslmhm 33303 lmhmqusker 33361 frlmsnic 42501 |
| Copyright terms: Public domain | W3C validator |