MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhmd Structured version   Visualization version   GIF version

Theorem islmhmd 21002
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
islmhmd.x 𝑋 = (Base‘𝑆)
islmhmd.a · = ( ·𝑠𝑆)
islmhmd.b × = ( ·𝑠𝑇)
islmhmd.k 𝐾 = (Scalar‘𝑆)
islmhmd.j 𝐽 = (Scalar‘𝑇)
islmhmd.n 𝑁 = (Base‘𝐾)
islmhmd.s (𝜑𝑆 ∈ LMod)
islmhmd.t (𝜑𝑇 ∈ LMod)
islmhmd.c (𝜑𝐽 = 𝐾)
islmhmd.f (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
islmhmd.l ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
Assertion
Ref Expression
islmhmd (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem islmhmd
StepHypRef Expression
1 islmhmd.s . 2 (𝜑𝑆 ∈ LMod)
2 islmhmd.t . 2 (𝜑𝑇 ∈ LMod)
3 islmhmd.f . . 3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
4 islmhmd.c . . 3 (𝜑𝐽 = 𝐾)
5 islmhmd.l . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
65ralrimivva 3188 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
73, 4, 63jca 1128 . 2 (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
8 islmhmd.k . . 3 𝐾 = (Scalar‘𝑆)
9 islmhmd.j . . 3 𝐽 = (Scalar‘𝑇)
10 islmhmd.n . . 3 𝑁 = (Base‘𝐾)
11 islmhmd.x . . 3 𝑋 = (Base‘𝑆)
12 islmhmd.a . . 3 · = ( ·𝑠𝑆)
13 islmhmd.b . . 3 × = ( ·𝑠𝑇)
148, 9, 10, 11, 12, 13islmhm 20990 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
151, 2, 7, 14syl21anbrc 1345 1 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  cfv 6536  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280   GrpHom cghm 19200  LModclmod 20822   LMHom clmhm 20982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-lmhm 20985
This theorem is referenced by:  0lmhm  21003  idlmhm  21004  invlmhm  21005  lmhmco  21006  lmhmplusg  21007  lmhmvsca  21008  lmhmf1o  21009  reslmhm2  21016  reslmhm2b  21017  pwsdiaglmhm  21020  pwssplit3  21024  frlmup1  21763  imaslmhm  33377  quslmhm  33379  lmhmqusker  33437  frlmsnic  42530
  Copyright terms: Public domain W3C validator