Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version |
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
Ref | Expression |
---|---|
islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
6 | 5 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
7 | 3, 4, 6 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
14 | 8, 9, 10, 11, 12, 13 | islmhm 20204 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
15 | 1, 2, 7, 14 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 GrpHom cghm 18746 LModclmod 20038 LMHom clmhm 20196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-lmhm 20199 |
This theorem is referenced by: 0lmhm 20217 idlmhm 20218 invlmhm 20219 lmhmco 20220 lmhmplusg 20221 lmhmvsca 20222 lmhmf1o 20223 reslmhm2 20230 reslmhm2b 20231 pwsdiaglmhm 20234 pwssplit3 20238 frlmup1 20915 quslmhm 31457 frlmsnic 40188 |
Copyright terms: Public domain | W3C validator |