Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version |
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
Ref | Expression |
---|---|
islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
6 | 5 | ralrimivva 3123 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
7 | 3, 4, 6 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
14 | 8, 9, 10, 11, 12, 13 | islmhm 20289 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
15 | 1, 2, 7, 14 | syl21anbrc 1343 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 GrpHom cghm 18831 LModclmod 20123 LMHom clmhm 20281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-lmhm 20284 |
This theorem is referenced by: 0lmhm 20302 idlmhm 20303 invlmhm 20304 lmhmco 20305 lmhmplusg 20306 lmhmvsca 20307 lmhmf1o 20308 reslmhm2 20315 reslmhm2b 20316 pwsdiaglmhm 20319 pwssplit3 20323 frlmup1 21005 quslmhm 31555 frlmsnic 40263 |
Copyright terms: Public domain | W3C validator |