![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version |
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
Ref | Expression |
---|---|
islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islmhmd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
2 | islmhmd.t | . . 3 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
3 | 1, 2 | jca 508 | . 2 ⊢ (𝜑 → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod)) |
4 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
5 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
6 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
7 | 6 | ralrimivva 3156 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
8 | 4, 5, 7 | 3jca 1159 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
9 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
10 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
11 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
12 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
13 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
14 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
15 | 9, 10, 11, 12, 13, 14 | islmhm 19352 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
16 | 3, 8, 15 | sylanbrc 579 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3093 ‘cfv 6105 (class class class)co 6882 Basecbs 16188 Scalarcsca 16274 ·𝑠 cvsca 16275 GrpHom cghm 17974 LModclmod 19185 LMHom clmhm 19344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2379 ax-ext 2781 ax-sep 4979 ax-nul 4987 ax-pow 5039 ax-pr 5101 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2593 df-eu 2611 df-clab 2790 df-cleq 2796 df-clel 2799 df-nfc 2934 df-ral 3098 df-rex 3099 df-rab 3102 df-v 3391 df-sbc 3638 df-dif 3776 df-un 3778 df-in 3780 df-ss 3787 df-nul 4120 df-if 4282 df-sn 4373 df-pr 4375 df-op 4379 df-uni 4633 df-br 4848 df-opab 4910 df-id 5224 df-xp 5322 df-rel 5323 df-cnv 5324 df-co 5325 df-dm 5326 df-iota 6068 df-fun 6107 df-fv 6113 df-ov 6885 df-oprab 6886 df-mpt2 6887 df-lmhm 19347 |
This theorem is referenced by: 0lmhm 19365 idlmhm 19366 invlmhm 19367 lmhmco 19368 lmhmplusg 19369 lmhmvsca 19370 lmhmf1o 19371 reslmhm2 19378 reslmhm2b 19379 pwsdiaglmhm 19382 pwssplit3 19386 frlmup1 20466 |
Copyright terms: Public domain | W3C validator |