MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmhmd Structured version   Visualization version   GIF version

Theorem islmhmd 19364
Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
islmhmd.x 𝑋 = (Base‘𝑆)
islmhmd.a · = ( ·𝑠𝑆)
islmhmd.b × = ( ·𝑠𝑇)
islmhmd.k 𝐾 = (Scalar‘𝑆)
islmhmd.j 𝐽 = (Scalar‘𝑇)
islmhmd.n 𝑁 = (Base‘𝐾)
islmhmd.s (𝜑𝑆 ∈ LMod)
islmhmd.t (𝜑𝑇 ∈ LMod)
islmhmd.c (𝜑𝐽 = 𝐾)
islmhmd.f (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
islmhmd.l ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
Assertion
Ref Expression
islmhmd (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑋,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem islmhmd
StepHypRef Expression
1 islmhmd.s . . 3 (𝜑𝑆 ∈ LMod)
2 islmhmd.t . . 3 (𝜑𝑇 ∈ LMod)
31, 2jca 508 . 2 (𝜑 → (𝑆 ∈ LMod ∧ 𝑇 ∈ LMod))
4 islmhmd.f . . 3 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
5 islmhmd.c . . 3 (𝜑𝐽 = 𝐾)
6 islmhmd.l . . . 4 ((𝜑 ∧ (𝑥𝑁𝑦𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
76ralrimivva 3156 . . 3 (𝜑 → ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))
84, 5, 73jca 1159 . 2 (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦))))
9 islmhmd.k . . 3 𝐾 = (Scalar‘𝑆)
10 islmhmd.j . . 3 𝐽 = (Scalar‘𝑇)
11 islmhmd.n . . 3 𝑁 = (Base‘𝐾)
12 islmhmd.x . . 3 𝑋 = (Base‘𝑆)
13 islmhmd.a . . 3 · = ( ·𝑠𝑆)
14 islmhmd.b . . 3 × = ( ·𝑠𝑇)
159, 10, 11, 12, 13, 14islmhm 19352 . 2 (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥𝑁𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹𝑦)))))
163, 8, 15sylanbrc 579 1 (𝜑𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108   = wceq 1653  wcel 2157  wral 3093  cfv 6105  (class class class)co 6882  Basecbs 16188  Scalarcsca 16274   ·𝑠 cvsca 16275   GrpHom cghm 17974  LModclmod 19185   LMHom clmhm 19344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2379  ax-ext 2781  ax-sep 4979  ax-nul 4987  ax-pow 5039  ax-pr 5101
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2593  df-eu 2611  df-clab 2790  df-cleq 2796  df-clel 2799  df-nfc 2934  df-ral 3098  df-rex 3099  df-rab 3102  df-v 3391  df-sbc 3638  df-dif 3776  df-un 3778  df-in 3780  df-ss 3787  df-nul 4120  df-if 4282  df-sn 4373  df-pr 4375  df-op 4379  df-uni 4633  df-br 4848  df-opab 4910  df-id 5224  df-xp 5322  df-rel 5323  df-cnv 5324  df-co 5325  df-dm 5326  df-iota 6068  df-fun 6107  df-fv 6113  df-ov 6885  df-oprab 6886  df-mpt2 6887  df-lmhm 19347
This theorem is referenced by:  0lmhm  19365  idlmhm  19366  invlmhm  19367  lmhmco  19368  lmhmplusg  19369  lmhmvsca  19370  lmhmf1o  19371  reslmhm2  19378  reslmhm2b  19379  pwsdiaglmhm  19382  pwssplit3  19386  frlmup1  20466
  Copyright terms: Public domain W3C validator