| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
| islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
| islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
| islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
| islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
| islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
| 2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
| 5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
| 6 | 5 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 7 | 3, 4, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
| 10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
| 11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | islmhm 20956 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 GrpHom cghm 19119 LModclmod 20788 LMHom clmhm 20948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-lmhm 20951 |
| This theorem is referenced by: 0lmhm 20969 idlmhm 20970 invlmhm 20971 lmhmco 20972 lmhmplusg 20973 lmhmvsca 20974 lmhmf1o 20975 reslmhm2 20982 reslmhm2b 20983 pwsdiaglmhm 20986 pwssplit3 20990 frlmup1 21730 imaslmhm 33314 quslmhm 33316 lmhmqusker 33374 frlmsnic 42573 |
| Copyright terms: Public domain | W3C validator |