| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
| islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
| islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
| islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
| islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
| islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
| 2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
| 5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
| 6 | 5 | ralrimivva 3172 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 7 | 3, 4, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
| 10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
| 11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | islmhm 20931 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 GrpHom cghm 19091 LModclmod 20763 LMHom clmhm 20923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-lmhm 20926 |
| This theorem is referenced by: 0lmhm 20944 idlmhm 20945 invlmhm 20946 lmhmco 20947 lmhmplusg 20948 lmhmvsca 20949 lmhmf1o 20950 reslmhm2 20957 reslmhm2b 20958 pwsdiaglmhm 20961 pwssplit3 20965 frlmup1 21705 imaslmhm 33294 quslmhm 33296 lmhmqusker 33354 frlmsnic 42513 |
| Copyright terms: Public domain | W3C validator |