| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islmhmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a module homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| islmhmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| islmhmd.a | ⊢ · = ( ·𝑠 ‘𝑆) |
| islmhmd.b | ⊢ × = ( ·𝑠 ‘𝑇) |
| islmhmd.k | ⊢ 𝐾 = (Scalar‘𝑆) |
| islmhmd.j | ⊢ 𝐽 = (Scalar‘𝑇) |
| islmhmd.n | ⊢ 𝑁 = (Base‘𝐾) |
| islmhmd.s | ⊢ (𝜑 → 𝑆 ∈ LMod) |
| islmhmd.t | ⊢ (𝜑 → 𝑇 ∈ LMod) |
| islmhmd.c | ⊢ (𝜑 → 𝐽 = 𝐾) |
| islmhmd.f | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| islmhmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| islmhmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmhmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) | |
| 2 | islmhmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ LMod) | |
| 3 | islmhmd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | |
| 4 | islmhmd.c | . . 3 ⊢ (𝜑 → 𝐽 = 𝐾) | |
| 5 | islmhmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑁 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) | |
| 6 | 5 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))) |
| 7 | 3, 4, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦)))) |
| 8 | islmhmd.k | . . 3 ⊢ 𝐾 = (Scalar‘𝑆) | |
| 9 | islmhmd.j | . . 3 ⊢ 𝐽 = (Scalar‘𝑇) | |
| 10 | islmhmd.n | . . 3 ⊢ 𝑁 = (Base‘𝐾) | |
| 11 | islmhmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 12 | islmhmd.a | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
| 13 | islmhmd.b | . . 3 ⊢ × = ( ·𝑠 ‘𝑇) | |
| 14 | 8, 9, 10, 11, 12, 13 | islmhm 20934 | . 2 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ ((𝑆 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ (𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐽 = 𝐾 ∧ ∀𝑥 ∈ 𝑁 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = (𝑥 × (𝐹‘𝑦))))) |
| 15 | 1, 2, 7, 14 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 GrpHom cghm 19144 LModclmod 20766 LMHom clmhm 20926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-lmhm 20929 |
| This theorem is referenced by: 0lmhm 20947 idlmhm 20948 invlmhm 20949 lmhmco 20950 lmhmplusg 20951 lmhmvsca 20952 lmhmf1o 20953 reslmhm2 20960 reslmhm2b 20961 pwsdiaglmhm 20964 pwssplit3 20968 frlmup1 21707 imaslmhm 33328 quslmhm 33330 lmhmqusker 33388 frlmsnic 42528 |
| Copyright terms: Public domain | W3C validator |