![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > idlmhm | Structured version Visualization version GIF version |
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
idlmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
idlmhm | ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2825 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2825 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
4 | eqid 2825 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
6 | eqidd 2826 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
7 | lmodgrp 19233 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
8 | 1 | idghm 18033 | . . 3 ⊢ (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
10 | 1, 3, 2, 4 | lmodvscl 19243 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
11 | 10 | 3expb 1153 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
12 | fvresi 6696 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
14 | fvresi 6696 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
15 | 14 | ad2antll 720 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
16 | 15 | oveq2d 6926 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
17 | 13, 16 | eqtr4d 2864 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦))) |
18 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17 | islmhmd 19405 | 1 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 I cid 5251 ↾ cres 5348 ‘cfv 6127 (class class class)co 6910 Basecbs 16229 Scalarcsca 16315 ·𝑠 cvsca 16316 Grpcgrp 17783 GrpHom cghm 18015 LModclmod 19226 LMHom clmhm 19385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-ghm 18016 df-lmod 19228 df-lmhm 19388 |
This theorem is referenced by: idnmhm 22935 mendring 38604 |
Copyright terms: Public domain | W3C validator |