| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idlmhm | Structured version Visualization version GIF version | ||
| Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| idlmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| idlmhm | ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2735 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
| 6 | eqidd 2736 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
| 7 | lmodgrp 20824 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 8 | 1 | idghm 19214 | . . 3 ⊢ (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 10 | 1, 3, 2, 4 | lmodvscl 20835 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 12 | fvresi 7165 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 14 | fvresi 7165 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
| 15 | 14 | ad2antll 729 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 16 | 15 | oveq2d 7421 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 17 | 13, 16 | eqtr4d 2773 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦))) |
| 18 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17 | islmhmd 20997 | 1 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 I cid 5547 ↾ cres 5656 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 Grpcgrp 18916 GrpHom cghm 19195 LModclmod 20817 LMHom clmhm 20977 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-ghm 19196 df-lmod 20819 df-lmhm 20980 |
| This theorem is referenced by: idnmhm 24693 mendring 43212 |
| Copyright terms: Public domain | W3C validator |