Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > idlmhm | Structured version Visualization version GIF version |
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
Ref | Expression |
---|---|
idlmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
idlmhm | ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2738 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
4 | eqid 2738 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
6 | eqidd 2739 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
7 | lmodgrp 20130 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
8 | 1 | idghm 18849 | . . 3 ⊢ (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
10 | 1, 3, 2, 4 | lmodvscl 20140 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
11 | 10 | 3expb 1119 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
12 | fvresi 7045 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
14 | fvresi 7045 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
15 | 14 | ad2antll 726 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
16 | 15 | oveq2d 7291 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
17 | 13, 16 | eqtr4d 2781 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦))) |
18 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17 | islmhmd 20301 | 1 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 I cid 5488 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 Grpcgrp 18577 GrpHom cghm 18831 LModclmod 20123 LMHom clmhm 20281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-ghm 18832 df-lmod 20125 df-lmhm 20284 |
This theorem is referenced by: idnmhm 23918 mendring 41017 |
Copyright terms: Public domain | W3C validator |