| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idlmhm | Structured version Visualization version GIF version | ||
| Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| idlmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| idlmhm | ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2729 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2729 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2729 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
| 6 | eqidd 2730 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
| 7 | lmodgrp 20788 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 8 | 1 | idghm 19128 | . . 3 ⊢ (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 10 | 1, 3, 2, 4 | lmodvscl 20799 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 12 | fvresi 7113 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 14 | fvresi 7113 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
| 15 | 14 | ad2antll 729 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 16 | 15 | oveq2d 7369 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 17 | 13, 16 | eqtr4d 2767 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦))) |
| 18 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17 | islmhmd 20961 | 1 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 I cid 5517 ↾ cres 5625 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 Grpcgrp 18830 GrpHom cghm 19109 LModclmod 20781 LMHom clmhm 20941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-ghm 19110 df-lmod 20783 df-lmhm 20944 |
| This theorem is referenced by: idnmhm 24658 mendring 43161 |
| Copyright terms: Public domain | W3C validator |