MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idlmhm Structured version   Visualization version   GIF version

Theorem idlmhm 19806
Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Hypothesis
Ref Expression
idlmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
idlmhm (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀))

Proof of Theorem idlmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlmhm.b . 2 𝐵 = (Base‘𝑀)
2 eqid 2798 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2798 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2798 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
5 id 22 . 2 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
6 eqidd 2799 . 2 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
7 lmodgrp 19634 . . 3 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
81idghm 18365 . . 3 (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀))
97, 8syl 17 . 2 (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀))
101, 3, 2, 4lmodvscl 19644 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
11103expb 1117 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵)
12 fvresi 6912 . . . 4 ((𝑥( ·𝑠𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
1311, 12syl 17 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
14 fvresi 6912 . . . . 5 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
1514ad2antll 728 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦)
1615oveq2d 7151 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (𝑥( ·𝑠𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠𝑀)𝑦))
1713, 16eqtr4d 2836 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑀)(( I ↾ 𝐵)‘𝑦)))
181, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17islmhmd 19804 1 (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   I cid 5424  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  Grpcgrp 18095   GrpHom cghm 18347  LModclmod 19627   LMHom clmhm 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-ghm 18348  df-lmod 19629  df-lmhm 19787
This theorem is referenced by:  idnmhm  23360  mendring  40136
  Copyright terms: Public domain W3C validator