| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > idlmhm | Structured version Visualization version GIF version | ||
| Description: The identity function on a module is linear. (Contributed by Stefan O'Rear, 4-Sep-2015.) |
| Ref | Expression |
|---|---|
| idlmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| idlmhm | ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2733 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2733 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2733 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
| 6 | eqidd 2734 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
| 7 | lmodgrp 20802 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 8 | 1 | idghm 19145 | . . 3 ⊢ (𝑀 ∈ Grp → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 GrpHom 𝑀)) |
| 10 | 1, 3, 2, 4 | lmodvscl 20813 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 11 | 10 | 3expb 1120 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 12 | fvresi 7113 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 14 | fvresi 7113 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
| 15 | 14 | ad2antll 729 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘𝑦) = 𝑦) |
| 16 | 15 | oveq2d 7368 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦)) = (𝑥( ·𝑠 ‘𝑀)𝑦)) |
| 17 | 13, 16 | eqtr4d 2771 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝐵)) → (( I ↾ 𝐵)‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(( I ↾ 𝐵)‘𝑦))) |
| 18 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 9, 17 | islmhmd 20975 | 1 ⊢ (𝑀 ∈ LMod → ( I ↾ 𝐵) ∈ (𝑀 LMHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 I cid 5513 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 Grpcgrp 18848 GrpHom cghm 19126 LModclmod 20795 LMHom clmhm 20955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-ghm 19127 df-lmod 20797 df-lmhm 20958 |
| This theorem is referenced by: idnmhm 24670 mendring 43305 |
| Copyright terms: Public domain | W3C validator |