| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invlmhm | Structured version Visualization version GIF version | ||
| Description: The negative function on a module is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| invlmhm.b | ⊢ 𝐼 = (invg‘𝑀) |
| Ref | Expression |
|---|---|
| invlmhm | ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 LMHom 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 2 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2731 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 4 | eqid 2731 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 5 | id 22 | . 2 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) | |
| 6 | eqidd 2732 | . 2 ⊢ (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
| 7 | lmodabl 20843 | . . 3 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
| 8 | invlmhm.b | . . . 4 ⊢ 𝐼 = (invg‘𝑀) | |
| 9 | 1, 8 | invghm 19746 | . . 3 ⊢ (𝑀 ∈ Abel ↔ 𝐼 ∈ (𝑀 GrpHom 𝑀)) |
| 10 | 7, 9 | sylib 218 | . 2 ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 GrpHom 𝑀)) |
| 11 | 1, 3, 2, 8, 4 | lmodvsinv2 20972 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠 ‘𝑀)(𝐼‘𝑦)) = (𝐼‘(𝑥( ·𝑠 ‘𝑀)𝑦))) |
| 12 | 11 | eqcomd 2737 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐼‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(𝐼‘𝑦))) |
| 13 | 12 | 3expb 1120 | . 2 ⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐼‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑀)(𝐼‘𝑦))) |
| 14 | 1, 2, 2, 3, 3, 4, 5, 5, 6, 10, 13 | islmhmd 20974 | 1 ⊢ (𝑀 ∈ LMod → 𝐼 ∈ (𝑀 LMHom 𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 invgcminusg 18847 GrpHom cghm 19125 Abelcabl 19694 LModclmod 20794 LMHom clmhm 20954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-lmod 20796 df-lmhm 20957 |
| This theorem is referenced by: mendring 43227 |
| Copyright terms: Public domain | W3C validator |