Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0lmhm | Structured version Visualization version GIF version |
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0lmhm.z | ⊢ 0 = (0g‘𝑁) |
0lmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
0lmhm.s | ⊢ 𝑆 = (Scalar‘𝑀) |
0lmhm.t | ⊢ 𝑇 = (Scalar‘𝑁) |
Ref | Expression |
---|---|
0lmhm | ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2758 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2758 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | 0lmhm.s | . 2 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 0lmhm.t | . 2 ⊢ 𝑇 = (Scalar‘𝑁) | |
6 | eqid 2758 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | simp1 1133 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod) | |
8 | simp2 1134 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod) | |
9 | simp3 1135 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇) | |
10 | 9 | eqcomd 2764 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆) |
11 | lmodgrp 19709 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
12 | lmodgrp 19709 | . . . 4 ⊢ (𝑁 ∈ LMod → 𝑁 ∈ Grp) | |
13 | 0lmhm.z | . . . . 5 ⊢ 0 = (0g‘𝑁) | |
14 | 13, 1 | 0ghm 18439 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
15 | 11, 12, 14 | syl2an 598 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
16 | 15 | 3adant3 1129 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
17 | simpl2 1189 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ LMod) | |
18 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑆)) | |
19 | simpl3 1190 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑆 = 𝑇) | |
20 | 19 | fveq2d 6662 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (Base‘𝑆) = (Base‘𝑇)) |
21 | 18, 20 | eleqtrd 2854 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑇)) |
22 | eqid 2758 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
23 | 5, 3, 22, 13 | lmodvs0 19736 | . . . 4 ⊢ ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
24 | 17, 21, 23 | syl2anc 587 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
25 | 13 | fvexi 6672 | . . . . . 6 ⊢ 0 ∈ V |
26 | 25 | fvconst2 6957 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) |
27 | 26 | oveq2d 7166 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
28 | 27 | ad2antll 728 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
29 | simpl1 1188 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑀 ∈ LMod) | |
30 | simprr 772 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
31 | 1, 4, 2, 6 | lmodvscl 19719 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
32 | 29, 18, 30, 31 | syl3anc 1368 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
33 | 25 | fvconst2 6957 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
34 | 32, 33 | syl 17 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
35 | 24, 28, 34 | 3eqtr4rd 2804 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦))) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35 | islmhmd 19879 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 {csn 4522 × cxp 5522 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 Scalarcsca 16626 ·𝑠 cvsca 16627 0gc0g 16771 Grpcgrp 18169 GrpHom cghm 18422 LModclmod 19702 LMHom clmhm 19859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-er 8299 df-map 8418 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-mhm 18022 df-grp 18172 df-ghm 18423 df-mgp 19308 df-ring 19367 df-lmod 19704 df-lmhm 19862 |
This theorem is referenced by: 0nmhm 23457 mendring 40509 |
Copyright terms: Public domain | W3C validator |