| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0lmhm | Structured version Visualization version GIF version | ||
| Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| 0lmhm.z | ⊢ 0 = (0g‘𝑁) |
| 0lmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
| 0lmhm.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| 0lmhm.t | ⊢ 𝑇 = (Scalar‘𝑁) |
| Ref | Expression |
|---|---|
| 0lmhm | ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
| 4 | 0lmhm.s | . 2 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 5 | 0lmhm.t | . 2 ⊢ 𝑇 = (Scalar‘𝑁) | |
| 6 | eqid 2731 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 7 | simp1 1136 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod) | |
| 8 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod) | |
| 9 | simp3 1138 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇) | |
| 10 | 9 | eqcomd 2737 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆) |
| 11 | lmodgrp 20801 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
| 12 | lmodgrp 20801 | . . . 4 ⊢ (𝑁 ∈ LMod → 𝑁 ∈ Grp) | |
| 13 | 0lmhm.z | . . . . 5 ⊢ 0 = (0g‘𝑁) | |
| 14 | 13, 1 | 0ghm 19143 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| 15 | 11, 12, 14 | syl2an 596 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| 16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
| 17 | simpl2 1193 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ LMod) | |
| 18 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑆)) | |
| 19 | simpl3 1194 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑆 = 𝑇) | |
| 20 | 19 | fveq2d 6826 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (Base‘𝑆) = (Base‘𝑇)) |
| 21 | 18, 20 | eleqtrd 2833 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑇)) |
| 22 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 23 | 5, 3, 22, 13 | lmodvs0 20830 | . . . 4 ⊢ ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
| 24 | 17, 21, 23 | syl2anc 584 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
| 25 | 13 | fvexi 6836 | . . . . . 6 ⊢ 0 ∈ V |
| 26 | 25 | fvconst2 7138 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) |
| 27 | 26 | oveq2d 7362 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
| 28 | 27 | ad2antll 729 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
| 29 | simpl1 1192 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑀 ∈ LMod) | |
| 30 | simprr 772 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
| 31 | 1, 4, 2, 6 | lmodvscl 20812 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 32 | 29, 18, 30, 31 | syl3anc 1373 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
| 33 | 25 | fvconst2 7138 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
| 34 | 32, 33 | syl 17 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
| 35 | 24, 28, 34 | 3eqtr4rd 2777 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦))) |
| 36 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35 | islmhmd 20974 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {csn 4576 × cxp 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 Grpcgrp 18846 GrpHom cghm 19125 LModclmod 20794 LMHom clmhm 20954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-grp 18849 df-minusg 18850 df-ghm 19126 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-lmod 20796 df-lmhm 20957 |
| This theorem is referenced by: 0nmhm 24671 mendring 43227 |
| Copyright terms: Public domain | W3C validator |