![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lmhm | Structured version Visualization version GIF version |
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0lmhm.z | ⊢ 0 = (0g‘𝑁) |
0lmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
0lmhm.s | ⊢ 𝑆 = (Scalar‘𝑀) |
0lmhm.t | ⊢ 𝑇 = (Scalar‘𝑁) |
Ref | Expression |
---|---|
0lmhm | ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2740 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2740 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | 0lmhm.s | . 2 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 0lmhm.t | . 2 ⊢ 𝑇 = (Scalar‘𝑁) | |
6 | eqid 2740 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | simp1 1136 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod) | |
8 | simp2 1137 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod) | |
9 | simp3 1138 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇) | |
10 | 9 | eqcomd 2746 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆) |
11 | lmodgrp 20887 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
12 | lmodgrp 20887 | . . . 4 ⊢ (𝑁 ∈ LMod → 𝑁 ∈ Grp) | |
13 | 0lmhm.z | . . . . 5 ⊢ 0 = (0g‘𝑁) | |
14 | 13, 1 | 0ghm 19270 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
15 | 11, 12, 14 | syl2an 595 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
16 | 15 | 3adant3 1132 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
17 | simpl2 1192 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ LMod) | |
18 | simprl 770 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑆)) | |
19 | simpl3 1193 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑆 = 𝑇) | |
20 | 19 | fveq2d 6924 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (Base‘𝑆) = (Base‘𝑇)) |
21 | 18, 20 | eleqtrd 2846 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑇)) |
22 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
23 | 5, 3, 22, 13 | lmodvs0 20916 | . . . 4 ⊢ ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
24 | 17, 21, 23 | syl2anc 583 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
25 | 13 | fvexi 6934 | . . . . . 6 ⊢ 0 ∈ V |
26 | 25 | fvconst2 7241 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) |
27 | 26 | oveq2d 7464 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
28 | 27 | ad2antll 728 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
29 | simpl1 1191 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑀 ∈ LMod) | |
30 | simprr 772 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
31 | 1, 4, 2, 6 | lmodvscl 20898 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
32 | 29, 18, 30, 31 | syl3anc 1371 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
33 | 25 | fvconst2 7241 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
34 | 32, 33 | syl 17 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
35 | 24, 28, 34 | 3eqtr4rd 2791 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦))) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35 | islmhmd 21061 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {csn 4648 × cxp 5698 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 Grpcgrp 18973 GrpHom cghm 19252 LModclmod 20880 LMHom clmhm 21041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-grp 18976 df-minusg 18977 df-ghm 19253 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-lmhm 21044 |
This theorem is referenced by: 0nmhm 24797 mendring 43149 |
Copyright terms: Public domain | W3C validator |