Step | Hyp | Ref
| Expression |
1 | | 0lmhm.b |
. 2
β’ π΅ = (Baseβπ) |
2 | | eqid 2732 |
. 2
β’ (
Β·π βπ) = ( Β·π
βπ) |
3 | | eqid 2732 |
. 2
β’ (
Β·π βπ) = ( Β·π
βπ) |
4 | | 0lmhm.s |
. 2
β’ π = (Scalarβπ) |
5 | | 0lmhm.t |
. 2
β’ π = (Scalarβπ) |
6 | | eqid 2732 |
. 2
β’
(Baseβπ) =
(Baseβπ) |
7 | | simp1 1136 |
. 2
β’ ((π β LMod β§ π β LMod β§ π = π) β π β LMod) |
8 | | simp2 1137 |
. 2
β’ ((π β LMod β§ π β LMod β§ π = π) β π β LMod) |
9 | | simp3 1138 |
. . 3
β’ ((π β LMod β§ π β LMod β§ π = π) β π = π) |
10 | 9 | eqcomd 2738 |
. 2
β’ ((π β LMod β§ π β LMod β§ π = π) β π = π) |
11 | | lmodgrp 20470 |
. . . 4
β’ (π β LMod β π β Grp) |
12 | | lmodgrp 20470 |
. . . 4
β’ (π β LMod β π β Grp) |
13 | | 0lmhm.z |
. . . . 5
β’ 0 =
(0gβπ) |
14 | 13, 1 | 0ghm 19100 |
. . . 4
β’ ((π β Grp β§ π β Grp) β (π΅ Γ { 0 }) β (π GrpHom π)) |
15 | 11, 12, 14 | syl2an 596 |
. . 3
β’ ((π β LMod β§ π β LMod) β (π΅ Γ { 0 }) β (π GrpHom π)) |
16 | 15 | 3adant3 1132 |
. 2
β’ ((π β LMod β§ π β LMod β§ π = π) β (π΅ Γ { 0 }) β (π GrpHom π)) |
17 | | simpl2 1192 |
. . . 4
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π β LMod) |
18 | | simprl 769 |
. . . . 5
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π₯ β (Baseβπ)) |
19 | | simpl3 1193 |
. . . . . 6
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π = π) |
20 | 19 | fveq2d 6892 |
. . . . 5
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β (Baseβπ) = (Baseβπ)) |
21 | 18, 20 | eleqtrd 2835 |
. . . 4
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π₯ β (Baseβπ)) |
22 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
23 | 5, 3, 22, 13 | lmodvs0 20498 |
. . . 4
β’ ((π β LMod β§ π₯ β (Baseβπ)) β (π₯( Β·π
βπ) 0 ) = 0
) |
24 | 17, 21, 23 | syl2anc 584 |
. . 3
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β (π₯( Β·π
βπ) 0 ) = 0
) |
25 | 13 | fvexi 6902 |
. . . . . 6
β’ 0 β
V |
26 | 25 | fvconst2 7201 |
. . . . 5
β’ (π¦ β π΅ β ((π΅ Γ { 0 })βπ¦) = 0 ) |
27 | 26 | oveq2d 7421 |
. . . 4
β’ (π¦ β π΅ β (π₯( Β·π
βπ)((π΅ Γ { 0 })βπ¦)) = (π₯( Β·π
βπ) 0
)) |
28 | 27 | ad2antll 727 |
. . 3
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β (π₯( Β·π
βπ)((π΅ Γ { 0 })βπ¦)) = (π₯( Β·π
βπ) 0
)) |
29 | | simpl1 1191 |
. . . . 5
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π β LMod) |
30 | | simprr 771 |
. . . . 5
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β π¦ β π΅) |
31 | 1, 4, 2, 6 | lmodvscl 20481 |
. . . . 5
β’ ((π β LMod β§ π₯ β (Baseβπ) β§ π¦ β π΅) β (π₯( Β·π
βπ)π¦) β π΅) |
32 | 29, 18, 30, 31 | syl3anc 1371 |
. . . 4
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β (π₯( Β·π
βπ)π¦) β π΅) |
33 | 25 | fvconst2 7201 |
. . . 4
β’ ((π₯(
Β·π βπ)π¦) β π΅ β ((π΅ Γ { 0 })β(π₯(
Β·π βπ)π¦)) = 0 ) |
34 | 32, 33 | syl 17 |
. . 3
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β ((π΅ Γ { 0 })β(π₯(
Β·π βπ)π¦)) = 0 ) |
35 | 24, 28, 34 | 3eqtr4rd 2783 |
. 2
β’ (((π β LMod β§ π β LMod β§ π = π) β§ (π₯ β (Baseβπ) β§ π¦ β π΅)) β ((π΅ Γ { 0 })β(π₯(
Β·π βπ)π¦)) = (π₯( Β·π
βπ)((π΅ Γ { 0 })βπ¦))) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35 | islmhmd 20642 |
1
β’ ((π β LMod β§ π β LMod β§ π = π) β (π΅ Γ { 0 }) β (π LMHom π)) |