![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0lmhm | Structured version Visualization version GIF version |
Description: The constant zero linear function between two modules. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0lmhm.z | ⊢ 0 = (0g‘𝑁) |
0lmhm.b | ⊢ 𝐵 = (Base‘𝑀) |
0lmhm.s | ⊢ 𝑆 = (Scalar‘𝑀) |
0lmhm.t | ⊢ 𝑇 = (Scalar‘𝑁) |
Ref | Expression |
---|---|
0lmhm | ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0lmhm.b | . 2 ⊢ 𝐵 = (Base‘𝑀) | |
2 | eqid 2724 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2724 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | 0lmhm.s | . 2 ⊢ 𝑆 = (Scalar‘𝑀) | |
5 | 0lmhm.t | . 2 ⊢ 𝑇 = (Scalar‘𝑁) | |
6 | eqid 2724 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
7 | simp1 1133 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑀 ∈ LMod) | |
8 | simp2 1134 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑁 ∈ LMod) | |
9 | simp3 1135 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑆 = 𝑇) | |
10 | 9 | eqcomd 2730 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → 𝑇 = 𝑆) |
11 | lmodgrp 20698 | . . . 4 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) | |
12 | lmodgrp 20698 | . . . 4 ⊢ (𝑁 ∈ LMod → 𝑁 ∈ Grp) | |
13 | 0lmhm.z | . . . . 5 ⊢ 0 = (0g‘𝑁) | |
14 | 13, 1 | 0ghm 19140 | . . . 4 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
15 | 11, 12, 14 | syl2an 595 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
16 | 15 | 3adant3 1129 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
17 | simpl2 1189 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑁 ∈ LMod) | |
18 | simprl 768 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑆)) | |
19 | simpl3 1190 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑆 = 𝑇) | |
20 | 19 | fveq2d 6885 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (Base‘𝑆) = (Base‘𝑇)) |
21 | 18, 20 | eleqtrd 2827 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑥 ∈ (Base‘𝑇)) |
22 | eqid 2724 | . . . . 5 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
23 | 5, 3, 22, 13 | lmodvs0 20727 | . . . 4 ⊢ ((𝑁 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑇)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
24 | 17, 21, 23 | syl2anc 583 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁) 0 ) = 0 ) |
25 | 13 | fvexi 6895 | . . . . . 6 ⊢ 0 ∈ V |
26 | 25 | fvconst2 7197 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝐵 × { 0 })‘𝑦) = 0 ) |
27 | 26 | oveq2d 7417 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
28 | 27 | ad2antll 726 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦)) = (𝑥( ·𝑠 ‘𝑁) 0 )) |
29 | simpl1 1188 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑀 ∈ LMod) | |
30 | simprr 770 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → 𝑦 ∈ 𝐵) | |
31 | 1, 4, 2, 6 | lmodvscl 20709 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
32 | 29, 18, 30, 31 | syl3anc 1368 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵) |
33 | 25 | fvconst2 7197 | . . . 4 ⊢ ((𝑥( ·𝑠 ‘𝑀)𝑦) ∈ 𝐵 → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
34 | 32, 33 | syl 17 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = 0 ) |
35 | 24, 28, 34 | 3eqtr4rd 2775 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) ∧ (𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ 𝐵)) → ((𝐵 × { 0 })‘(𝑥( ·𝑠 ‘𝑀)𝑦)) = (𝑥( ·𝑠 ‘𝑁)((𝐵 × { 0 })‘𝑦))) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 16, 35 | islmhmd 20872 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑁 ∈ LMod ∧ 𝑆 = 𝑇) → (𝐵 × { 0 }) ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {csn 4620 × cxp 5664 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 Scalarcsca 17196 ·𝑠 cvsca 17197 0gc0g 17381 Grpcgrp 18850 GrpHom cghm 19123 LModclmod 20691 LMHom clmhm 20852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-grp 18853 df-minusg 18854 df-ghm 19124 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-lmod 20693 df-lmhm 20855 |
This theorem is referenced by: 0nmhm 24582 mendring 42389 |
Copyright terms: Public domain | W3C validator |