![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmhm | Structured version Visualization version GIF version |
Description: If πΊ is a submodule of π, then the "natural map" from elements to their cosets is a left module homomorphism from π to π / πΊ. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslmod.n | β’ π = (π /s (π ~QG πΊ)) |
quslmod.v | β’ π = (Baseβπ) |
quslmod.1 | β’ (π β π β LMod) |
quslmod.2 | β’ (π β πΊ β (LSubSpβπ)) |
quslmhm.f | β’ πΉ = (π₯ β π β¦ [π₯](π ~QG πΊ)) |
Ref | Expression |
---|---|
quslmhm | β’ (π β πΉ β (π LMHom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.v | . 2 β’ π = (Baseβπ) | |
2 | eqid 2733 | . 2 β’ ( Β·π βπ) = ( Β·π βπ) | |
3 | eqid 2733 | . 2 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | eqid 2733 | . 2 β’ (Scalarβπ) = (Scalarβπ) | |
5 | eqid 2733 | . 2 β’ (Scalarβπ) = (Scalarβπ) | |
6 | eqid 2733 | . 2 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
7 | quslmod.1 | . 2 β’ (π β π β LMod) | |
8 | quslmod.n | . . 3 β’ π = (π /s (π ~QG πΊ)) | |
9 | quslmod.2 | . . 3 β’ (π β πΊ β (LSubSpβπ)) | |
10 | 8, 1, 7, 9 | quslmod 32469 | . 2 β’ (π β π β LMod) |
11 | 8 | a1i 11 | . . . 4 β’ (π β π = (π /s (π ~QG πΊ))) |
12 | 1 | a1i 11 | . . . 4 β’ (π β π = (Baseβπ)) |
13 | ovexd 7444 | . . . 4 β’ (π β (π ~QG πΊ) β V) | |
14 | 11, 12, 13, 7, 4 | quss 17492 | . . 3 β’ (π β (Scalarβπ) = (Scalarβπ)) |
15 | 14 | eqcomd 2739 | . 2 β’ (π β (Scalarβπ) = (Scalarβπ)) |
16 | eqid 2733 | . . . . . 6 β’ (LSubSpβπ) = (LSubSpβπ) | |
17 | 16 | lsssubg 20568 | . . . . 5 β’ ((π β LMod β§ πΊ β (LSubSpβπ)) β πΊ β (SubGrpβπ)) |
18 | 7, 9, 17 | syl2anc 585 | . . . 4 β’ (π β πΊ β (SubGrpβπ)) |
19 | lmodabl 20519 | . . . . 5 β’ (π β LMod β π β Abel) | |
20 | ablnsg 19715 | . . . . 5 β’ (π β Abel β (NrmSGrpβπ) = (SubGrpβπ)) | |
21 | 7, 19, 20 | 3syl 18 | . . . 4 β’ (π β (NrmSGrpβπ) = (SubGrpβπ)) |
22 | 18, 21 | eleqtrrd 2837 | . . 3 β’ (π β πΊ β (NrmSGrpβπ)) |
23 | quslmhm.f | . . . 4 β’ πΉ = (π₯ β π β¦ [π₯](π ~QG πΊ)) | |
24 | 1, 8, 23 | qusghm 19129 | . . 3 β’ (πΊ β (NrmSGrpβπ) β πΉ β (π GrpHom π)) |
25 | 22, 24 | syl 17 | . 2 β’ (π β πΉ β (π GrpHom π)) |
26 | 11, 12, 23, 13, 7 | qusval 17488 | . . . . 5 β’ (π β π = (πΉ βs π)) |
27 | 11, 12, 23, 13, 7 | quslem 17489 | . . . . 5 β’ (π β πΉ:πβontoβ(π / (π ~QG πΊ))) |
28 | eqid 2733 | . . . . . 6 β’ (π ~QG πΊ) = (π ~QG πΊ) | |
29 | 7 | adantr 482 | . . . . . 6 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β π β LMod) |
30 | 9 | adantr 482 | . . . . . 6 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β πΊ β (LSubSpβπ)) |
31 | simpr1 1195 | . . . . . 6 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β π β (Baseβ(Scalarβπ))) | |
32 | simpr2 1196 | . . . . . 6 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β π’ β π) | |
33 | simpr3 1197 | . . . . . 6 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β π£ β π) | |
34 | 1, 28, 6, 2, 29, 30, 31, 8, 3, 23, 32, 33 | qusvscpbl 32466 | . . . . 5 β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π’ β π β§ π£ β π)) β ((πΉβπ’) = (πΉβπ£) β (πΉβ(π( Β·π βπ)π’)) = (πΉβ(π( Β·π βπ)π£)))) |
35 | 26, 12, 27, 7, 4, 6, 2, 3, 34 | imasvscaval 17484 | . . . 4 β’ ((π β§ π¦ β (Baseβ(Scalarβπ)) β§ π§ β π) β (π¦( Β·π βπ)(πΉβπ§)) = (πΉβ(π¦( Β·π βπ)π§))) |
36 | 35 | 3expb 1121 | . . 3 β’ ((π β§ (π¦ β (Baseβ(Scalarβπ)) β§ π§ β π)) β (π¦( Β·π βπ)(πΉβπ§)) = (πΉβ(π¦( Β·π βπ)π§))) |
37 | 36 | eqcomd 2739 | . 2 β’ ((π β§ (π¦ β (Baseβ(Scalarβπ)) β§ π§ β π)) β (πΉβ(π¦( Β·π βπ)π§)) = (π¦( Β·π βπ)(πΉβπ§))) |
38 | 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 37 | islmhmd 20650 | 1 β’ (π β πΉ β (π LMHom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 Vcvv 3475 β¦ cmpt 5232 βcfv 6544 (class class class)co 7409 [cec 8701 / cqs 8702 Basecbs 17144 Scalarcsca 17200 Β·π cvsca 17201 /s cqus 17451 SubGrpcsubg 19000 NrmSGrpcnsg 19001 ~QG cqg 19002 GrpHom cghm 19089 Abelcabl 19649 LModclmod 20471 LSubSpclss 20542 LMHom clmhm 20630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-ec 8705 df-qs 8709 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-0g 17387 df-imas 17454 df-qus 17455 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-minusg 18823 df-sbg 18824 df-subg 19003 df-nsg 19004 df-eqg 19005 df-ghm 19090 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-lmod 20473 df-lss 20543 df-lmhm 20633 |
This theorem is referenced by: qusdimsum 32713 |
Copyright terms: Public domain | W3C validator |