![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmhm | Structured version Visualization version GIF version |
Description: If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
quslmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) |
Ref | Expression |
---|---|
quslmhm | ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.v | . 2 ⊢ 𝑉 = (Base‘𝑀) | |
2 | eqid 2728 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2728 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | eqid 2728 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
5 | eqid 2728 | . 2 ⊢ (Scalar‘𝑁) = (Scalar‘𝑁) | |
6 | eqid 2728 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
7 | quslmod.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
8 | quslmod.n | . . 3 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
9 | quslmod.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
10 | 8, 1, 7, 9 | quslmod 33094 | . 2 ⊢ (𝜑 → 𝑁 ∈ LMod) |
11 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
12 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
13 | ovexd 7461 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
14 | 11, 12, 13, 7, 4 | quss 17535 | . . 3 ⊢ (𝜑 → (Scalar‘𝑀) = (Scalar‘𝑁)) |
15 | 14 | eqcomd 2734 | . 2 ⊢ (𝜑 → (Scalar‘𝑁) = (Scalar‘𝑀)) |
16 | eqid 2728 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
17 | 16 | lsssubg 20848 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
18 | 7, 9, 17 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
19 | lmodabl 20799 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
20 | ablnsg 19809 | . . . . 5 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
21 | 7, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
22 | 18, 21 | eleqtrrd 2832 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
23 | quslmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
24 | 1, 8, 23 | qusghm 19216 | . . 3 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
25 | 22, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
26 | 11, 12, 23, 13, 7 | qusval 17531 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝐹 “s 𝑀)) |
27 | 11, 12, 23, 13, 7 | quslem 17532 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
28 | eqid 2728 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
29 | 7 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) |
30 | 9 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
31 | simpr1 1191 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
32 | simpr2 1192 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) | |
33 | simpr3 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) | |
34 | 1, 28, 6, 2, 29, 30, 31, 8, 3, 23, 32, 33 | qusvscpbl 33087 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑢) = (𝐹‘𝑣) → (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑢)) = (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑣)))) |
35 | 26, 12, 27, 7, 4, 6, 2, 3, 34 | imasvscaval 17527 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
36 | 35 | 3expb 1117 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
37 | 36 | eqcomd 2734 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧)) = (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧))) |
38 | 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 37 | islmhmd 20931 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ↦ cmpt 5235 ‘cfv 6553 (class class class)co 7426 [cec 8729 / cqs 8730 Basecbs 17187 Scalarcsca 17243 ·𝑠 cvsca 17244 /s cqus 17494 SubGrpcsubg 19082 NrmSGrpcnsg 19083 ~QG cqg 19084 GrpHom cghm 19174 Abelcabl 19743 LModclmod 20750 LSubSpclss 20822 LMHom clmhm 20911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-ec 8733 df-qs 8737 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-tset 17259 df-ple 17260 df-ds 17262 df-0g 17430 df-imas 17497 df-qus 17498 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-nsg 19086 df-eqg 19087 df-ghm 19175 df-cmn 19744 df-abl 19745 df-mgp 20082 df-rng 20100 df-ur 20129 df-ring 20182 df-lmod 20752 df-lss 20823 df-lmhm 20914 |
This theorem is referenced by: qusdimsum 33359 |
Copyright terms: Public domain | W3C validator |