| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmhm | Structured version Visualization version GIF version | ||
| Description: If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
| quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
| quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
| quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
| quslmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) |
| Ref | Expression |
|---|---|
| quslmhm | ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | quslmod.v | . 2 ⊢ 𝑉 = (Base‘𝑀) | |
| 2 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
| 3 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
| 4 | eqid 2731 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
| 5 | eqid 2731 | . 2 ⊢ (Scalar‘𝑁) = (Scalar‘𝑁) | |
| 6 | eqid 2731 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
| 7 | quslmod.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
| 8 | quslmod.n | . . 3 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
| 9 | quslmod.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
| 10 | 8, 1, 7, 9 | quslmod 33315 | . 2 ⊢ (𝜑 → 𝑁 ∈ LMod) |
| 11 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
| 12 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
| 13 | ovexd 7376 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
| 14 | 11, 12, 13, 7, 4 | quss 17445 | . . 3 ⊢ (𝜑 → (Scalar‘𝑀) = (Scalar‘𝑁)) |
| 15 | 14 | eqcomd 2737 | . 2 ⊢ (𝜑 → (Scalar‘𝑁) = (Scalar‘𝑀)) |
| 16 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 17 | 16 | lsssubg 20885 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
| 18 | 7, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
| 19 | lmodabl 20837 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
| 20 | ablnsg 19754 | . . . . 5 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
| 21 | 7, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
| 22 | 18, 21 | eleqtrrd 2834 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
| 23 | quslmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
| 24 | 1, 8, 23 | qusghm 19162 | . . 3 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
| 25 | 22, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
| 26 | 11, 12, 23, 13, 7 | qusval 17441 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝐹 “s 𝑀)) |
| 27 | 11, 12, 23, 13, 7 | quslem 17442 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
| 28 | eqid 2731 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
| 29 | 7 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) |
| 30 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
| 31 | simpr1 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
| 32 | simpr2 1196 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) | |
| 33 | simpr3 1197 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) | |
| 34 | 1, 28, 6, 2, 29, 30, 31, 8, 3, 23, 32, 33 | qusvscpbl 33308 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑢) = (𝐹‘𝑣) → (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑢)) = (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑣)))) |
| 35 | 26, 12, 27, 7, 4, 6, 2, 3, 34 | imasvscaval 17437 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
| 36 | 35 | 3expb 1120 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
| 37 | 36 | eqcomd 2737 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧)) = (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧))) |
| 38 | 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 37 | islmhmd 20968 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 [cec 8615 / cqs 8616 Basecbs 17115 Scalarcsca 17159 ·𝑠 cvsca 17160 /s cqus 17404 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 GrpHom cghm 19119 Abelcabl 19688 LModclmod 20788 LSubSpclss 20859 LMHom clmhm 20948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-0g 17340 df-imas 17407 df-qus 17408 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 df-eqg 19033 df-ghm 19120 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lmhm 20951 |
| This theorem is referenced by: qusdimsum 33633 |
| Copyright terms: Public domain | W3C validator |