Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > quslmhm | Structured version Visualization version GIF version |
Description: If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
quslmod.n | ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) |
quslmod.v | ⊢ 𝑉 = (Base‘𝑀) |
quslmod.1 | ⊢ (𝜑 → 𝑀 ∈ LMod) |
quslmod.2 | ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
quslmhm.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) |
Ref | Expression |
---|---|
quslmhm | ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | quslmod.v | . 2 ⊢ 𝑉 = (Base‘𝑀) | |
2 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
3 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑁) = ( ·𝑠 ‘𝑁) | |
4 | eqid 2738 | . 2 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
5 | eqid 2738 | . 2 ⊢ (Scalar‘𝑁) = (Scalar‘𝑁) | |
6 | eqid 2738 | . 2 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
7 | quslmod.1 | . 2 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
8 | quslmod.n | . . 3 ⊢ 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)) | |
9 | quslmod.2 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) | |
10 | 8, 1, 7, 9 | quslmod 31554 | . 2 ⊢ (𝜑 → 𝑁 ∈ LMod) |
11 | 8 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))) |
12 | 1 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 = (Base‘𝑀)) |
13 | ovexd 7310 | . . . 4 ⊢ (𝜑 → (𝑀 ~QG 𝐺) ∈ V) | |
14 | 11, 12, 13, 7, 4 | quss 17257 | . . 3 ⊢ (𝜑 → (Scalar‘𝑀) = (Scalar‘𝑁)) |
15 | 14 | eqcomd 2744 | . 2 ⊢ (𝜑 → (Scalar‘𝑁) = (Scalar‘𝑀)) |
16 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
17 | 16 | lsssubg 20219 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
18 | 7, 9, 17 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
19 | lmodabl 20170 | . . . . 5 ⊢ (𝑀 ∈ LMod → 𝑀 ∈ Abel) | |
20 | ablnsg 19448 | . . . . 5 ⊢ (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) | |
21 | 7, 19, 20 | 3syl 18 | . . . 4 ⊢ (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀)) |
22 | 18, 21 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (NrmSGrp‘𝑀)) |
23 | quslmhm.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥](𝑀 ~QG 𝐺)) | |
24 | 1, 8, 23 | qusghm 18871 | . . 3 ⊢ (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
25 | 22, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
26 | 11, 12, 23, 13, 7 | qusval 17253 | . . . . 5 ⊢ (𝜑 → 𝑁 = (𝐹 “s 𝑀)) |
27 | 11, 12, 23, 13, 7 | quslem 17254 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–onto→(𝑉 / (𝑀 ~QG 𝐺))) |
28 | eqid 2738 | . . . . . 6 ⊢ (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺) | |
29 | 7 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑀 ∈ LMod) |
30 | 9 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝐺 ∈ (LSubSp‘𝑀)) |
31 | simpr1 1193 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀))) | |
32 | simpr2 1194 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑢 ∈ 𝑉) | |
33 | simpr3 1195 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → 𝑣 ∈ 𝑉) | |
34 | 1, 28, 6, 2, 29, 30, 31, 8, 3, 23, 32, 33 | qusvscpbl 31551 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → ((𝐹‘𝑢) = (𝐹‘𝑣) → (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑢)) = (𝐹‘(𝑘( ·𝑠 ‘𝑀)𝑣)))) |
35 | 26, 12, 27, 7, 4, 6, 2, 3, 34 | imasvscaval 17249 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
36 | 35 | 3expb 1119 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧)) = (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧))) |
37 | 36 | eqcomd 2744 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧 ∈ 𝑉)) → (𝐹‘(𝑦( ·𝑠 ‘𝑀)𝑧)) = (𝑦( ·𝑠 ‘𝑁)(𝐹‘𝑧))) |
38 | 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 37 | islmhmd 20301 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 [cec 8496 / cqs 8497 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 /s cqus 17216 SubGrpcsubg 18749 NrmSGrpcnsg 18750 ~QG cqg 18751 GrpHom cghm 18831 Abelcabl 19387 LModclmod 20123 LSubSpclss 20193 LMHom clmhm 20281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-ec 8500 df-qs 8504 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-0g 17152 df-imas 17219 df-qus 17220 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-lmod 20125 df-lss 20194 df-lmhm 20284 |
This theorem is referenced by: qusdimsum 31709 |
Copyright terms: Public domain | W3C validator |