Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  quslmhm Structured version   Visualization version   GIF version

Theorem quslmhm 33315
Description: If 𝐺 is a submodule of 𝑀, then the "natural map" from elements to their cosets is a left module homomorphism from 𝑀 to 𝑀 / 𝐺. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
quslmod.n 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
quslmod.v 𝑉 = (Base‘𝑀)
quslmod.1 (𝜑𝑀 ∈ LMod)
quslmod.2 (𝜑𝐺 ∈ (LSubSp‘𝑀))
quslmhm.f 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
Assertion
Ref Expression
quslmhm (𝜑𝐹 ∈ (𝑀 LMHom 𝑁))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑀   𝑥,𝑉   𝜑,𝑥   𝑥,𝑁
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem quslmhm
Dummy variables 𝑘 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 quslmod.v . 2 𝑉 = (Base‘𝑀)
2 eqid 2729 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2729 . 2 ( ·𝑠𝑁) = ( ·𝑠𝑁)
4 eqid 2729 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2729 . 2 (Scalar‘𝑁) = (Scalar‘𝑁)
6 eqid 2729 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 quslmod.1 . 2 (𝜑𝑀 ∈ LMod)
8 quslmod.n . . 3 𝑁 = (𝑀 /s (𝑀 ~QG 𝐺))
9 quslmod.2 . . 3 (𝜑𝐺 ∈ (LSubSp‘𝑀))
108, 1, 7, 9quslmod 33314 . 2 (𝜑𝑁 ∈ LMod)
118a1i 11 . . . 4 (𝜑𝑁 = (𝑀 /s (𝑀 ~QG 𝐺)))
121a1i 11 . . . 4 (𝜑𝑉 = (Base‘𝑀))
13 ovexd 7388 . . . 4 (𝜑 → (𝑀 ~QG 𝐺) ∈ V)
1411, 12, 13, 7, 4quss 17469 . . 3 (𝜑 → (Scalar‘𝑀) = (Scalar‘𝑁))
1514eqcomd 2735 . 2 (𝜑 → (Scalar‘𝑁) = (Scalar‘𝑀))
16 eqid 2729 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
1716lsssubg 20879 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
187, 9, 17syl2anc 584 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
19 lmodabl 20831 . . . . 5 (𝑀 ∈ LMod → 𝑀 ∈ Abel)
20 ablnsg 19745 . . . . 5 (𝑀 ∈ Abel → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
217, 19, 203syl 18 . . . 4 (𝜑 → (NrmSGrp‘𝑀) = (SubGrp‘𝑀))
2218, 21eleqtrrd 2831 . . 3 (𝜑𝐺 ∈ (NrmSGrp‘𝑀))
23 quslmhm.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥](𝑀 ~QG 𝐺))
241, 8, 23qusghm 19153 . . 3 (𝐺 ∈ (NrmSGrp‘𝑀) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
2522, 24syl 17 . 2 (𝜑𝐹 ∈ (𝑀 GrpHom 𝑁))
2611, 12, 23, 13, 7qusval 17465 . . . . 5 (𝜑𝑁 = (𝐹s 𝑀))
2711, 12, 23, 13, 7quslem 17466 . . . . 5 (𝜑𝐹:𝑉onto→(𝑉 / (𝑀 ~QG 𝐺)))
28 eqid 2729 . . . . . 6 (𝑀 ~QG 𝐺) = (𝑀 ~QG 𝐺)
297adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → 𝑀 ∈ LMod)
309adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → 𝐺 ∈ (LSubSp‘𝑀))
31 simpr1 1195 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → 𝑘 ∈ (Base‘(Scalar‘𝑀)))
32 simpr2 1196 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → 𝑢𝑉)
33 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → 𝑣𝑉)
341, 28, 6, 2, 29, 30, 31, 8, 3, 23, 32, 33qusvscpbl 33307 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑢𝑉𝑣𝑉)) → ((𝐹𝑢) = (𝐹𝑣) → (𝐹‘(𝑘( ·𝑠𝑀)𝑢)) = (𝐹‘(𝑘( ·𝑠𝑀)𝑣))))
3526, 12, 27, 7, 4, 6, 2, 3, 34imasvscaval 17461 . . . 4 ((𝜑𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧𝑉) → (𝑦( ·𝑠𝑁)(𝐹𝑧)) = (𝐹‘(𝑦( ·𝑠𝑀)𝑧)))
36353expb 1120 . . 3 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧𝑉)) → (𝑦( ·𝑠𝑁)(𝐹𝑧)) = (𝐹‘(𝑦( ·𝑠𝑀)𝑧)))
3736eqcomd 2735 . 2 ((𝜑 ∧ (𝑦 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑧𝑉)) → (𝐹‘(𝑦( ·𝑠𝑀)𝑧)) = (𝑦( ·𝑠𝑁)(𝐹𝑧)))
381, 2, 3, 4, 5, 6, 7, 10, 15, 25, 37islmhmd 20962 1 (𝜑𝐹 ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  [cec 8630   / cqs 8631  Basecbs 17139  Scalarcsca 17183   ·𝑠 cvsca 17184   /s cqus 17428  SubGrpcsubg 19018  NrmSGrpcnsg 19019   ~QG cqg 19020   GrpHom cghm 19110  Abelcabl 19679  LModclmod 20782  LSubSpclss 20853   LMHom clmhm 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-0g 17364  df-imas 17431  df-qus 17432  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-nsg 19022  df-eqg 19023  df-ghm 19111  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-ring 20139  df-lmod 20784  df-lss 20854  df-lmhm 20945
This theorem is referenced by:  qusdimsum  33614
  Copyright terms: Public domain W3C validator