MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islmim2 Structured version   Visualization version   GIF version

Theorem islmim2 21038
Description: An isomorphism of left modules is a homomorphism whose converse is a homomorphism. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
islmim2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹 ∈ (𝑆 LMHom 𝑅)))

Proof of Theorem islmim2
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2734 . . 3 (Base‘𝑆) = (Base‘𝑆)
31, 2islmim 21034 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
41, 2lmhmf1o 21018 . . 3 (𝐹 ∈ (𝑅 LMHom 𝑆) → (𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆) ↔ 𝐹 ∈ (𝑆 LMHom 𝑅)))
54pm5.32i 574 . 2 ((𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹 ∈ (𝑆 LMHom 𝑅)))
63, 5bitri 275 1 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹 ∈ (𝑆 LMHom 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2107  ccnv 5666  1-1-ontowf1o 6541  cfv 6542  (class class class)co 7414  Basecbs 17230   LMHom clmhm 20991   LMIso clmim 20992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7997  df-2nd 7998  df-map 8851  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-ghm 19205  df-lmod 20833  df-lmhm 20994  df-lmim 20995
This theorem is referenced by:  lmimcnv  21039  lnmlmic  43045
  Copyright terms: Public domain W3C validator