MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimco Structured version   Visualization version   GIF version

Theorem lmimco 20760
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmimco ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))

Proof of Theorem lmimco
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . . 3 (Base‘𝑇) = (Base‘𝑇)
31, 2islmim 20053 . 2 (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)))
4 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
54, 1islmim 20053 . 2 (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
6 lmhmco 20034 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
76ad2ant2r 747 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
8 f1oco 6661 . . . 4 ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
98ad2ant2l 746 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
104, 2islmim 20053 . . 3 ((𝐹𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)))
117, 9, 10sylanbrc 586 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
123, 5, 11syl2anb 601 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  ccom 5540  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7191  Basecbs 16666   LMHom clmhm 20010   LMIso clmim 20011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-ghm 18574  df-lmod 19855  df-lmhm 20013  df-lmim 20014
This theorem is referenced by:  lmictra  20761
  Copyright terms: Public domain W3C validator