![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimco | Structured version Visualization version GIF version |
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
Ref | Expression |
---|---|
lmimco | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2732 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
3 | 1, 2 | islmim 20817 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))) |
4 | eqid 2732 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 4, 1 | islmim 20817 | . 2 ⊢ (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
6 | lmhmco 20798 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) | |
7 | 6 | ad2ant2r 745 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) |
8 | f1oco 6856 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) | |
9 | 8 | ad2ant2l 744 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) |
10 | 4, 2 | islmim 20817 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))) |
11 | 7, 9, 10 | sylanbrc 583 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
12 | 3, 5, 11 | syl2anb 598 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∘ ccom 5680 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 LMHom clmhm 20774 LMIso clmim 20775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-ghm 19128 df-lmod 20616 df-lmhm 20777 df-lmim 20778 |
This theorem is referenced by: lmictra 21619 |
Copyright terms: Public domain | W3C validator |