MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimco Structured version   Visualization version   GIF version

Theorem lmimco 21864
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmimco ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))

Proof of Theorem lmimco
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2737 . . 3 (Base‘𝑇) = (Base‘𝑇)
31, 2islmim 21061 . 2 (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)))
4 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
54, 1islmim 21061 . 2 (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
6 lmhmco 21042 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
76ad2ant2r 747 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
8 f1oco 6871 . . . 4 ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
98ad2ant2l 746 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
104, 2islmim 21061 . . 3 ((𝐹𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)))
117, 9, 10sylanbrc 583 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
123, 5, 11syl2anb 598 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ccom 5689  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  Basecbs 17247   LMHom clmhm 21018   LMIso clmim 21019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-ghm 19231  df-lmod 20860  df-lmhm 21021  df-lmim 21022
This theorem is referenced by:  lmictra  21865
  Copyright terms: Public domain W3C validator