| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimco | Structured version Visualization version GIF version | ||
| Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| lmimco | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | islmim 20989 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))) |
| 4 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4, 1 | islmim 20989 | . 2 ⊢ (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 6 | lmhmco 20970 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) | |
| 7 | 6 | ad2ant2r 747 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) |
| 8 | f1oco 6782 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) | |
| 9 | 8 | ad2ant2l 746 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) |
| 10 | 4, 2 | islmim 20989 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))) |
| 11 | 7, 9, 10 | sylanbrc 583 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| 12 | 3, 5, 11 | syl2anb 598 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2110 ∘ ccom 5618 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 LMHom clmhm 20946 LMIso clmim 20947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-map 8747 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-ghm 19118 df-lmod 20788 df-lmhm 20949 df-lmim 20950 |
| This theorem is referenced by: lmictra 21775 |
| Copyright terms: Public domain | W3C validator |