| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimco | Structured version Visualization version GIF version | ||
| Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.) |
| Ref | Expression |
|---|---|
| lmimco | ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2733 | . . 3 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | 1, 2 | islmim 21006 | . 2 ⊢ (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇))) |
| 4 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | 4, 1 | islmim 21006 | . 2 ⊢ (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 6 | lmhmco 20987 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) | |
| 7 | 6 | ad2ant2r 747 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇)) |
| 8 | f1oco 6794 | . . . 4 ⊢ ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) | |
| 9 | 8 | ad2ant2l 746 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)) |
| 10 | 4, 2 | islmim 21006 | . . 3 ⊢ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹 ∘ 𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹 ∘ 𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))) |
| 11 | 7, 9, 10 | sylanbrc 583 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| 12 | 3, 5, 11 | syl2anb 598 | 1 ⊢ ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹 ∘ 𝐺) ∈ (𝑅 LMIso 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ∘ ccom 5625 –1-1-onto→wf1o 6488 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 LMHom clmhm 20963 LMIso clmim 20964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-grp 18859 df-ghm 19135 df-lmod 20805 df-lmhm 20966 df-lmim 20967 |
| This theorem is referenced by: lmictra 21792 |
| Copyright terms: Public domain | W3C validator |