MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimco Structured version   Visualization version   GIF version

Theorem lmimco 20961
Description: The composition of two isomorphisms of modules is an isomorphism of modules. (Contributed by AV, 10-Mar-2019.)
Assertion
Ref Expression
lmimco ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))

Proof of Theorem lmimco
StepHypRef Expression
1 eqid 2738 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2738 . . 3 (Base‘𝑇) = (Base‘𝑇)
31, 2islmim 20239 . 2 (𝐹 ∈ (𝑆 LMIso 𝑇) ↔ (𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)))
4 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
54, 1islmim 20239 . 2 (𝐺 ∈ (𝑅 LMIso 𝑆) ↔ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
6 lmhmco 20220 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺 ∈ (𝑅 LMHom 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
76ad2ant2r 743 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMHom 𝑇))
8 f1oco 6722 . . . 4 ((𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
98ad2ant2l 742 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇))
104, 2islmim 20239 . . 3 ((𝐹𝐺) ∈ (𝑅 LMIso 𝑇) ↔ ((𝐹𝐺) ∈ (𝑅 LMHom 𝑇) ∧ (𝐹𝐺):(Base‘𝑅)–1-1-onto→(Base‘𝑇)))
117, 9, 10sylanbrc 582 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝐹:(Base‘𝑆)–1-1-onto→(Base‘𝑇)) ∧ (𝐺 ∈ (𝑅 LMHom 𝑆) ∧ 𝐺:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
123, 5, 11syl2anb 597 1 ((𝐹 ∈ (𝑆 LMIso 𝑇) ∧ 𝐺 ∈ (𝑅 LMIso 𝑆)) → (𝐹𝐺) ∈ (𝑅 LMIso 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  ccom 5584  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840   LMHom clmhm 20196   LMIso clmim 20197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-ghm 18747  df-lmod 20040  df-lmhm 20199  df-lmim 20200
This theorem is referenced by:  lmictra  20962
  Copyright terms: Public domain W3C validator