| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islpi | Structured version Visualization version GIF version | ||
| Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.) |
| Ref | Expression |
|---|---|
| lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| islpi | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpfval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clslp 23061 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
| 3 | 2 | eleq2d 2817 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))) |
| 4 | elun 4103 | . . . . 5 ⊢ (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) | |
| 5 | df-or 848 | . . . . 5 ⊢ ((𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) | |
| 6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) |
| 7 | 3, 6 | bitrdi 287 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)))) |
| 8 | 7 | biimpd 229 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)))) |
| 9 | 8 | imp32 418 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Topctop 22806 clsccl 22931 limPtclp 23047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22807 df-cld 22932 df-ntr 22933 df-cls 22934 df-nei 23011 df-lp 23049 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |