MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpi Structured version   Visualization version   GIF version

Theorem islpi 23052
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islpi (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))

Proof of Theorem islpi
StepHypRef Expression
1 lpfval.1 . . . . . 6 𝑋 = 𝐽
21clslp 23051 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
32eleq2d 2814 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
4 elun 4106 . . . . 5 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
5 df-or 848 . . . . 5 ((𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
64, 5bitri 275 . . . 4 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
73, 6bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
87biimpd 229 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
98imp32 418 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3903  wss 3905   cuni 4861  cfv 6486  Topctop 22796  clsccl 22921  limPtclp 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator