![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > islpi | Structured version Visualization version GIF version |
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.) |
Ref | Expression |
---|---|
lpfval.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
islpi | ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lpfval.1 | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clslp 23046 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆))) |
3 | 2 | eleq2d 2815 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))) |
4 | elun 4145 | . . . . 5 ⊢ (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) | |
5 | df-or 847 | . . . . 5 ⊢ ((𝑃 ∈ 𝑆 ∨ 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) | |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))) |
7 | 3, 6 | bitrdi 287 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)))) |
8 | 7 | biimpd 228 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (¬ 𝑃 ∈ 𝑆 → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)))) |
9 | 8 | imp32 418 | 1 ⊢ (((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃 ∈ 𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ∪ cun 3943 ⊆ wss 3945 ∪ cuni 4904 ‘cfv 6543 Topctop 22789 clsccl 22916 limPtclp 23032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-top 22790 df-cld 22917 df-ntr 22918 df-cls 22919 df-nei 22996 df-lp 23034 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |