MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpi Structured version   Visualization version   GIF version

Theorem islpi 22051
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islpi (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))

Proof of Theorem islpi
StepHypRef Expression
1 lpfval.1 . . . . . 6 𝑋 = 𝐽
21clslp 22050 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
32eleq2d 2823 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
4 elun 4068 . . . . 5 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
5 df-or 848 . . . . 5 ((𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
64, 5bitri 278 . . . 4 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
73, 6bitrdi 290 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
87biimpd 232 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
98imp32 422 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 847   = wceq 1543  wcel 2110  cun 3869  wss 3871   cuni 4824  cfv 6385  Topctop 21795  clsccl 21920  limPtclp 22036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5184  ax-sep 5197  ax-nul 5204  ax-pow 5263  ax-pr 5327  ax-un 7528
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3415  df-sbc 3700  df-csb 3817  df-dif 3874  df-un 3876  df-in 3878  df-ss 3888  df-nul 4243  df-if 4445  df-pw 4520  df-sn 4547  df-pr 4549  df-op 4553  df-uni 4825  df-int 4865  df-iun 4911  df-iin 4912  df-br 5059  df-opab 5121  df-mpt 5141  df-id 5460  df-xp 5562  df-rel 5563  df-cnv 5564  df-co 5565  df-dm 5566  df-rn 5567  df-res 5568  df-ima 5569  df-iota 6343  df-fun 6387  df-fn 6388  df-f 6389  df-f1 6390  df-fo 6391  df-f1o 6392  df-fv 6393  df-top 21796  df-cld 21921  df-ntr 21922  df-cls 21923  df-nei 22000  df-lp 22038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator