MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpi Structured version   Visualization version   GIF version

Theorem islpi 23062
Description: A point belonging to a set's closure but not the set itself is a limit point. (Contributed by NM, 8-Nov-2007.)
Hypothesis
Ref Expression
lpfval.1 𝑋 = 𝐽
Assertion
Ref Expression
islpi (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))

Proof of Theorem islpi
StepHypRef Expression
1 lpfval.1 . . . . . 6 𝑋 = 𝐽
21clslp 23061 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) = (𝑆 ∪ ((limPt‘𝐽)‘𝑆)))
32eleq2d 2817 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ 𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆))))
4 elun 4103 . . . . 5 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
5 df-or 848 . . . . 5 ((𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
64, 5bitri 275 . . . 4 (𝑃 ∈ (𝑆 ∪ ((limPt‘𝐽)‘𝑆)) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆)))
73, 6bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) ↔ (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
87biimpd 229 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑃 ∈ ((cls‘𝐽)‘𝑆) → (¬ 𝑃𝑆𝑃 ∈ ((limPt‘𝐽)‘𝑆))))
98imp32 418 1 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ (𝑃 ∈ ((cls‘𝐽)‘𝑆) ∧ ¬ 𝑃𝑆)) → 𝑃 ∈ ((limPt‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  cun 3900  wss 3902   cuni 4859  cfv 6481  Topctop 22806  clsccl 22931  limPtclp 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22807  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator