| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isnvi.5 | ⊢ 𝑋 = ran 𝐺 |
| isnvi.6 | ⊢ 𝑍 = (GId‘𝐺) |
| isnvi.7 | ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD |
| isnvi.8 | ⊢ 𝑁:𝑋⟶ℝ |
| isnvi.9 | ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) |
| isnvi.10 | ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| isnvi.11 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| isnvi.12 | ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 |
| Ref | Expression |
|---|---|
| isnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvi.12 | . 2 ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 | |
| 2 | isnvi.7 | . . 3 ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD | |
| 3 | isnvi.8 | . . 3 ⊢ 𝑁:𝑋⟶ℝ | |
| 4 | isnvi.9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
| 6 | isnvi.10 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
| 7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 8 | 7 | ralrimiva 3146 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 9 | isnvi.11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
| 10 | 9 | ralrimiva 3146 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 11 | 5, 8, 10 | 3jca 1129 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 12 | 11 | rgen 3063 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 13 | isnvi.5 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 14 | isnvi.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 15 | 13, 14 | isnv 30631 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 16 | 2, 3, 12, 15 | mpbir3an 1342 | . 2 ⊢ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec |
| 17 | 1, 16 | eqeltri 2837 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∀wral 3061 〈cop 4632 class class class wbr 5143 ran crn 5686 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 + caddc 11158 · cmul 11160 ≤ cle 11296 abscabs 15273 GIdcgi 30509 CVecOLDcvc 30577 NrmCVeccnv 30603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-vc 30578 df-nv 30611 |
| This theorem is referenced by: cnnv 30696 hhnv 31184 hhssnv 31283 |
| Copyright terms: Public domain | W3C validator |