| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isnvi.5 | ⊢ 𝑋 = ran 𝐺 |
| isnvi.6 | ⊢ 𝑍 = (GId‘𝐺) |
| isnvi.7 | ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD |
| isnvi.8 | ⊢ 𝑁:𝑋⟶ℝ |
| isnvi.9 | ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) |
| isnvi.10 | ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| isnvi.11 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| isnvi.12 | ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 |
| Ref | Expression |
|---|---|
| isnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvi.12 | . 2 ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 | |
| 2 | isnvi.7 | . . 3 ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD | |
| 3 | isnvi.8 | . . 3 ⊢ 𝑁:𝑋⟶ℝ | |
| 4 | isnvi.9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
| 6 | isnvi.10 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
| 7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 8 | 7 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 9 | isnvi.11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
| 10 | 9 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 11 | 5, 8, 10 | 3jca 1128 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 12 | 11 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 13 | isnvi.5 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 14 | isnvi.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 15 | 13, 14 | isnv 30541 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 16 | 2, 3, 12, 15 | mpbir3an 1342 | . 2 ⊢ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec |
| 17 | 1, 16 | eqeltri 2824 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4595 class class class wbr 5107 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 + caddc 11071 · cmul 11073 ≤ cle 11209 abscabs 15200 GIdcgi 30419 CVecOLDcvc 30487 NrmCVeccnv 30513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-vc 30488 df-nv 30521 |
| This theorem is referenced by: cnnv 30606 hhnv 31094 hhssnv 31193 |
| Copyright terms: Public domain | W3C validator |