MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   GIF version

Theorem isnvi 30595
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5 𝑋 = ran 𝐺
isnvi.6 𝑍 = (GId‘𝐺)
isnvi.7 𝐺, 𝑆⟩ ∈ CVecOLD
isnvi.8 𝑁:𝑋⟶ℝ
isnvi.9 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
isnvi.10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
isnvi.11 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
isnvi.12 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
Assertion
Ref Expression
isnvi 𝑈 ∈ NrmCVec
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
2 isnvi.7 . . 3 𝐺, 𝑆⟩ ∈ CVecOLD
3 isnvi.8 . . 3 𝑁:𝑋⟶ℝ
4 isnvi.9 . . . . . 6 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
54ex 412 . . . . 5 (𝑥𝑋 → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
6 isnvi.10 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
76ancoms 458 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
87ralrimiva 3125 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
9 isnvi.11 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109ralrimiva 3125 . . . . 5 (𝑥𝑋 → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
115, 8, 103jca 1128 . . . 4 (𝑥𝑋 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
1211rgen 3050 . . 3 𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 isnvi.5 . . . 4 𝑋 = ran 𝐺
14 isnvi.6 . . . 4 𝑍 = (GId‘𝐺)
1513, 14isnv 30594 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
162, 3, 12, 15mpbir3an 1342 . 2 ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec
171, 16eqeltri 2829 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cop 4581   class class class wbr 5093  ran crn 5620  wf 6482  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013   + caddc 11016   · cmul 11018  cle 11154  abscabs 15143  GIdcgi 30472  CVecOLDcvc 30540  NrmCVeccnv 30566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-vc 30541  df-nv 30574
This theorem is referenced by:  cnnv  30659  hhnv  31147  hhssnv  31246
  Copyright terms: Public domain W3C validator