![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvi | Structured version Visualization version GIF version |
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isnvi.5 | ⊢ 𝑋 = ran 𝐺 |
isnvi.6 | ⊢ 𝑍 = (GId‘𝐺) |
isnvi.7 | ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD |
isnvi.8 | ⊢ 𝑁:𝑋⟶ℝ |
isnvi.9 | ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) |
isnvi.10 | ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
isnvi.11 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
isnvi.12 | ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 |
Ref | Expression |
---|---|
isnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvi.12 | . 2 ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 | |
2 | isnvi.7 | . . 3 ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD | |
3 | isnvi.8 | . . 3 ⊢ 𝑁:𝑋⟶ℝ | |
4 | isnvi.9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) | |
5 | 4 | ex 405 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
6 | isnvi.10 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
7 | 6 | ancoms 451 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
8 | 7 | ralrimiva 3126 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
9 | isnvi.11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
10 | 9 | ralrimiva 3126 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
11 | 5, 8, 10 | 3jca 1108 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
12 | 11 | rgen 3092 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
13 | isnvi.5 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
14 | isnvi.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
15 | 13, 14 | isnv 28178 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
16 | 2, 3, 12, 15 | mpbir3an 1321 | . 2 ⊢ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec |
17 | 1, 16 | eqeltri 2856 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∀wral 3082 〈cop 4441 class class class wbr 4925 ran crn 5404 ⟶wf 6181 ‘cfv 6185 (class class class)co 6974 ℂcc 10331 ℝcr 10332 0cc0 10333 + caddc 10336 · cmul 10338 ≤ cle 10473 abscabs 14452 GIdcgi 28056 CVecOLDcvc 28124 NrmCVeccnv 28150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-vc 28125 df-nv 28158 |
This theorem is referenced by: cnnv 28243 hhnv 28733 hhssnv 28832 |
Copyright terms: Public domain | W3C validator |