MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   GIF version

Theorem isnvi 28396
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5 𝑋 = ran 𝐺
isnvi.6 𝑍 = (GId‘𝐺)
isnvi.7 𝐺, 𝑆⟩ ∈ CVecOLD
isnvi.8 𝑁:𝑋⟶ℝ
isnvi.9 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
isnvi.10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
isnvi.11 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
isnvi.12 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
Assertion
Ref Expression
isnvi 𝑈 ∈ NrmCVec
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
2 isnvi.7 . . 3 𝐺, 𝑆⟩ ∈ CVecOLD
3 isnvi.8 . . 3 𝑁:𝑋⟶ℝ
4 isnvi.9 . . . . . 6 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
54ex 416 . . . . 5 (𝑥𝑋 → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
6 isnvi.10 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
76ancoms 462 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
87ralrimiva 3149 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
9 isnvi.11 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109ralrimiva 3149 . . . . 5 (𝑥𝑋 → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
115, 8, 103jca 1125 . . . 4 (𝑥𝑋 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
1211rgen 3116 . . 3 𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 isnvi.5 . . . 4 𝑋 = ran 𝐺
14 isnvi.6 . . . 4 𝑍 = (GId‘𝐺)
1513, 14isnv 28395 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
162, 3, 12, 15mpbir3an 1338 . 2 ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec
171, 16eqeltri 2886 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cop 4531   class class class wbr 5030  ran crn 5520  wf 6320  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531  cle 10665  abscabs 14585  GIdcgi 28273  CVecOLDcvc 28341  NrmCVeccnv 28367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-vc 28342  df-nv 28375
This theorem is referenced by:  cnnv  28460  hhnv  28948  hhssnv  29047
  Copyright terms: Public domain W3C validator