MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   GIF version

Theorem isnvi 28975
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5 𝑋 = ran 𝐺
isnvi.6 𝑍 = (GId‘𝐺)
isnvi.7 𝐺, 𝑆⟩ ∈ CVecOLD
isnvi.8 𝑁:𝑋⟶ℝ
isnvi.9 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
isnvi.10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
isnvi.11 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
isnvi.12 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
Assertion
Ref Expression
isnvi 𝑈 ∈ NrmCVec
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
2 isnvi.7 . . 3 𝐺, 𝑆⟩ ∈ CVecOLD
3 isnvi.8 . . 3 𝑁:𝑋⟶ℝ
4 isnvi.9 . . . . . 6 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
54ex 413 . . . . 5 (𝑥𝑋 → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
6 isnvi.10 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
76ancoms 459 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
87ralrimiva 3103 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
9 isnvi.11 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109ralrimiva 3103 . . . . 5 (𝑥𝑋 → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
115, 8, 103jca 1127 . . . 4 (𝑥𝑋 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
1211rgen 3074 . . 3 𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 isnvi.5 . . . 4 𝑋 = ran 𝐺
14 isnvi.6 . . . 4 𝑍 = (GId‘𝐺)
1513, 14isnv 28974 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
162, 3, 12, 15mpbir3an 1340 . 2 ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec
171, 16eqeltri 2835 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cop 4567   class class class wbr 5074  ran crn 5590  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874   · cmul 10876  cle 11010  abscabs 14945  GIdcgi 28852  CVecOLDcvc 28920  NrmCVeccnv 28946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-vc 28921  df-nv 28954
This theorem is referenced by:  cnnv  29039  hhnv  29527  hhssnv  29626
  Copyright terms: Public domain W3C validator