| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isnvi | Structured version Visualization version GIF version | ||
| Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| isnvi.5 | ⊢ 𝑋 = ran 𝐺 |
| isnvi.6 | ⊢ 𝑍 = (GId‘𝐺) |
| isnvi.7 | ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD |
| isnvi.8 | ⊢ 𝑁:𝑋⟶ℝ |
| isnvi.9 | ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) |
| isnvi.10 | ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| isnvi.11 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| isnvi.12 | ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 |
| Ref | Expression |
|---|---|
| isnvi | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnvi.12 | . 2 ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 | |
| 2 | isnvi.7 | . . 3 ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD | |
| 3 | isnvi.8 | . . 3 ⊢ 𝑁:𝑋⟶ℝ | |
| 4 | isnvi.9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) | |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
| 6 | isnvi.10 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
| 7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 8 | 7 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
| 9 | isnvi.11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
| 10 | 9 | ralrimiva 3125 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 11 | 5, 8, 10 | 3jca 1128 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
| 12 | 11 | rgen 3050 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
| 13 | isnvi.5 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 14 | isnvi.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 15 | 13, 14 | isnv 30594 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
| 16 | 2, 3, 12, 15 | mpbir3an 1342 | . 2 ⊢ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec |
| 17 | 1, 16 | eqeltri 2829 | 1 ⊢ 𝑈 ∈ NrmCVec |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 〈cop 4581 class class class wbr 5093 ran crn 5620 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 + caddc 11016 · cmul 11018 ≤ cle 11154 abscabs 15143 GIdcgi 30472 CVecOLDcvc 30540 NrmCVeccnv 30566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-vc 30541 df-nv 30574 |
| This theorem is referenced by: cnnv 30659 hhnv 31147 hhssnv 31246 |
| Copyright terms: Public domain | W3C validator |