MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   GIF version

Theorem isnvi 30542
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5 𝑋 = ran 𝐺
isnvi.6 𝑍 = (GId‘𝐺)
isnvi.7 𝐺, 𝑆⟩ ∈ CVecOLD
isnvi.8 𝑁:𝑋⟶ℝ
isnvi.9 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
isnvi.10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
isnvi.11 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
isnvi.12 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
Assertion
Ref Expression
isnvi 𝑈 ∈ NrmCVec
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
2 isnvi.7 . . 3 𝐺, 𝑆⟩ ∈ CVecOLD
3 isnvi.8 . . 3 𝑁:𝑋⟶ℝ
4 isnvi.9 . . . . . 6 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
54ex 412 . . . . 5 (𝑥𝑋 → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
6 isnvi.10 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
76ancoms 458 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
87ralrimiva 3125 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
9 isnvi.11 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109ralrimiva 3125 . . . . 5 (𝑥𝑋 → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
115, 8, 103jca 1128 . . . 4 (𝑥𝑋 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
1211rgen 3046 . . 3 𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 isnvi.5 . . . 4 𝑋 = ran 𝐺
14 isnvi.6 . . . 4 𝑍 = (GId‘𝐺)
1513, 14isnv 30541 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
162, 3, 12, 15mpbir3an 1342 . 2 ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec
171, 16eqeltri 2824 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cop 4595   class class class wbr 5107  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  cle 11209  abscabs 15200  GIdcgi 30419  CVecOLDcvc 30487  NrmCVeccnv 30513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-vc 30488  df-nv 30521
This theorem is referenced by:  cnnv  30606  hhnv  31094  hhssnv  31193
  Copyright terms: Public domain W3C validator