![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnvi | Structured version Visualization version GIF version |
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
isnvi.5 | ⊢ 𝑋 = ran 𝐺 |
isnvi.6 | ⊢ 𝑍 = (GId‘𝐺) |
isnvi.7 | ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD |
isnvi.8 | ⊢ 𝑁:𝑋⟶ℝ |
isnvi.9 | ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) |
isnvi.10 | ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
isnvi.11 | ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
isnvi.12 | ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 |
Ref | Expression |
---|---|
isnvi | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isnvi.12 | . 2 ⊢ 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉 | |
2 | isnvi.7 | . . 3 ⊢ 〈𝐺, 𝑆〉 ∈ CVecOLD | |
3 | isnvi.8 | . . 3 ⊢ 𝑁:𝑋⟶ℝ | |
4 | isnvi.9 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ (𝑁‘𝑥) = 0) → 𝑥 = 𝑍) | |
5 | 4 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ((𝑁‘𝑥) = 0 → 𝑥 = 𝑍)) |
6 | isnvi.10 | . . . . . . 7 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ 𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) | |
7 | 6 | ancoms 458 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
8 | 7 | ralrimiva 3143 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥))) |
9 | isnvi.11 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) | |
10 | 9 | ralrimiva 3143 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
11 | 5, 8, 10 | 3jca 1127 | . . . 4 ⊢ (𝑥 ∈ 𝑋 → (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦)))) |
12 | 11 | rgen 3060 | . . 3 ⊢ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))) |
13 | isnvi.5 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
14 | isnvi.6 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
15 | 13, 14 | isnv 30640 | . . 3 ⊢ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ↔ (〈𝐺, 𝑆〉 ∈ CVecOLD ∧ 𝑁:𝑋⟶ℝ ∧ ∀𝑥 ∈ 𝑋 (((𝑁‘𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁‘𝑥)) ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁‘𝑥) + (𝑁‘𝑦))))) |
16 | 2, 3, 12, 15 | mpbir3an 1340 | . 2 ⊢ 〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec |
17 | 1, 16 | eqeltri 2834 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 〈cop 4636 class class class wbr 5147 ran crn 5689 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 + caddc 11155 · cmul 11157 ≤ cle 11293 abscabs 15269 GIdcgi 30518 CVecOLDcvc 30586 NrmCVeccnv 30612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-vc 30587 df-nv 30620 |
This theorem is referenced by: cnnv 30705 hhnv 31193 hhssnv 31292 |
Copyright terms: Public domain | W3C validator |