MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnvi Structured version   Visualization version   GIF version

Theorem isnvi 28876
Description: Properties that determine a normed complex vector space. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
isnvi.5 𝑋 = ran 𝐺
isnvi.6 𝑍 = (GId‘𝐺)
isnvi.7 𝐺, 𝑆⟩ ∈ CVecOLD
isnvi.8 𝑁:𝑋⟶ℝ
isnvi.9 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
isnvi.10 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
isnvi.11 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
isnvi.12 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
Assertion
Ref Expression
isnvi 𝑈 ∈ NrmCVec
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑁,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑍(𝑥,𝑦)

Proof of Theorem isnvi
StepHypRef Expression
1 isnvi.12 . 2 𝑈 = ⟨⟨𝐺, 𝑆⟩, 𝑁
2 isnvi.7 . . 3 𝐺, 𝑆⟩ ∈ CVecOLD
3 isnvi.8 . . 3 𝑁:𝑋⟶ℝ
4 isnvi.9 . . . . . 6 ((𝑥𝑋 ∧ (𝑁𝑥) = 0) → 𝑥 = 𝑍)
54ex 412 . . . . 5 (𝑥𝑋 → ((𝑁𝑥) = 0 → 𝑥 = 𝑍))
6 isnvi.10 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝑋) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
76ancoms 458 . . . . . 6 ((𝑥𝑋𝑦 ∈ ℂ) → (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
87ralrimiva 3107 . . . . 5 (𝑥𝑋 → ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)))
9 isnvi.11 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
109ralrimiva 3107 . . . . 5 (𝑥𝑋 → ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
115, 8, 103jca 1126 . . . 4 (𝑥𝑋 → (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦))))
1211rgen 3073 . . 3 𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))
13 isnvi.5 . . . 4 𝑋 = ran 𝐺
14 isnvi.6 . . . 4 𝑍 = (GId‘𝐺)
1513, 14isnv 28875 . . 3 (⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec ↔ (⟨𝐺, 𝑆⟩ ∈ CVecOLD𝑁:𝑋⟶ℝ ∧ ∀𝑥𝑋 (((𝑁𝑥) = 0 → 𝑥 = 𝑍) ∧ ∀𝑦 ∈ ℂ (𝑁‘(𝑦𝑆𝑥)) = ((abs‘𝑦) · (𝑁𝑥)) ∧ ∀𝑦𝑋 (𝑁‘(𝑥𝐺𝑦)) ≤ ((𝑁𝑥) + (𝑁𝑦)))))
162, 3, 12, 15mpbir3an 1339 . 2 ⟨⟨𝐺, 𝑆⟩, 𝑁⟩ ∈ NrmCVec
171, 16eqeltri 2835 1 𝑈 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cop 4564   class class class wbr 5070  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807  cle 10941  abscabs 14873  GIdcgi 28753  CVecOLDcvc 28821  NrmCVeccnv 28847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-vc 28822  df-nv 28855
This theorem is referenced by:  cnnv  28940  hhnv  29428  hhssnv  29527
  Copyright terms: Public domain W3C validator