| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3spthd | Structured version Visualization version GIF version | ||
| Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| 3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
| 3spthd.n | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| 3spthd | ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3trld 30144 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
| 11 | 3spthd.n | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 12 | df-3an 1088 | . . . . . . . . . . 11 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ 𝐴 ≠ 𝐷)) | |
| 13 | 12 | simplbi2 500 | . . . . . . . . . 10 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (𝐴 ≠ 𝐷 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 14 | 13 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷) → (𝐴 ≠ 𝐷 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 15 | 11, 14 | mpan9 506 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| 16 | simpr2 1196 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) | |
| 17 | simpr3 1197 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → 𝐶 ≠ 𝐷) | |
| 18 | 15, 16, 17 | 3jca 1128 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 19 | 4, 18 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 20 | funcnvs4 14817 | . . . . . 6 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) | |
| 21 | 3, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 23 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉) |
| 24 | 23 | cnveqd 5810 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → ◡𝑃 = ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 25 | 24 | funeqd 6498 | . . . 4 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun ◡𝑃 ↔ Fun ◡〈“𝐴𝐵𝐶𝐷”〉)) |
| 26 | 22, 25 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → Fun ◡𝑃) |
| 27 | isspth 29695 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 28 | 10, 26, 27 | sylanbrc 583 | . 2 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
| 29 | 9, 28 | mpdan 687 | 1 ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 {cpr 4573 class class class wbr 5086 ◡ccnv 5610 Fun wfun 6470 ‘cfv 6476 〈“cs3 14744 〈“cs4 14745 Vtxcvtx 28969 iEdgciedg 28970 Trailsctrls 29662 SPathscspths 29684 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-s4 14752 df-wlks 29573 df-trls 29664 df-spths 29688 |
| This theorem is referenced by: 3spthond 30149 |
| Copyright terms: Public domain | W3C validator |