| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3spthd | Structured version Visualization version GIF version | ||
| Description: A simple path of length 3 from one vertex to another, different vertex via a third vertex. (Contributed by AV, 10-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.) |
| Ref | Expression |
|---|---|
| 3wlkd.p | ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 |
| 3wlkd.f | ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 |
| 3wlkd.s | ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) |
| 3wlkd.n | ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 3wlkd.e | ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) |
| 3wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 3wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| 3trld.n | ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) |
| 3spthd.n | ⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| 3spthd | ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉 | |
| 2 | 3wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽𝐾𝐿”〉 | |
| 3 | 3wlkd.s | . . 3 ⊢ (𝜑 → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉))) | |
| 4 | 3wlkd.n | . . 3 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) | |
| 5 | 3wlkd.e | . . 3 ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼‘𝐿))) | |
| 6 | 3wlkd.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 7 | 3wlkd.i | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 8 | 3trld.n | . . 3 ⊢ (𝜑 → (𝐽 ≠ 𝐾 ∧ 𝐽 ≠ 𝐿 ∧ 𝐾 ≠ 𝐿)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 3trld 30173 | . 2 ⊢ (𝜑 → 𝐹(Trails‘𝐺)𝑃) |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(Trails‘𝐺)𝑃) | |
| 11 | 3spthd.n | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ≠ 𝐷) | |
| 12 | df-3an 1088 | . . . . . . . . . . 11 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ↔ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ 𝐴 ≠ 𝐷)) | |
| 13 | 12 | simplbi2 500 | . . . . . . . . . 10 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → (𝐴 ≠ 𝐷 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 14 | 13 | 3ad2ant1 1133 | . . . . . . . . 9 ⊢ (((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷) → (𝐴 ≠ 𝐷 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷))) |
| 15 | 11, 14 | mpan9 506 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷)) |
| 16 | simpr2 1196 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷)) | |
| 17 | simpr3 1197 | . . . . . . . 8 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → 𝐶 ≠ 𝐷) | |
| 18 | 15, 16, 17 | 3jca 1128 | . . . . . . 7 ⊢ ((𝜑 ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 19 | 4, 18 | mpdan 687 | . . . . . 6 ⊢ (𝜑 → ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) |
| 20 | funcnvs4 14829 | . . . . . 6 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉)) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐴 ≠ 𝐷) ∧ (𝐵 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) ∧ 𝐶 ≠ 𝐷)) → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) | |
| 21 | 3, 19, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 22 | 21 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → Fun ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 23 | 1 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝑃 = 〈“𝐴𝐵𝐶𝐷”〉) |
| 24 | 23 | cnveqd 5821 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → ◡𝑃 = ◡〈“𝐴𝐵𝐶𝐷”〉) |
| 25 | 24 | funeqd 6511 | . . . 4 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → (Fun ◡𝑃 ↔ Fun ◡〈“𝐴𝐵𝐶𝐷”〉)) |
| 26 | 22, 25 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → Fun ◡𝑃) |
| 27 | isspth 29721 | . . 3 ⊢ (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun ◡𝑃)) | |
| 28 | 10, 26, 27 | sylanbrc 583 | . 2 ⊢ ((𝜑 ∧ 𝐹(Trails‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) |
| 29 | 9, 28 | mpdan 687 | 1 ⊢ (𝜑 → 𝐹(SPaths‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {cpr 4579 class class class wbr 5095 ◡ccnv 5620 Fun wfun 6483 ‘cfv 6489 〈“cs3 14756 〈“cs4 14757 Vtxcvtx 28995 iEdgciedg 28996 Trailsctrls 29688 SPathscspths 29710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-fzo 13562 df-hash 14245 df-word 14428 df-concat 14485 df-s1 14511 df-s2 14762 df-s3 14763 df-s4 14764 df-wlks 29599 df-trls 29690 df-spths 29714 |
| This theorem is referenced by: 3spthond 30178 |
| Copyright terms: Public domain | W3C validator |