MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3trld Structured version   Visualization version   GIF version

Theorem 3trld 28268
Description: Construction of a trail from two given edges in a graph. (Contributed by Alexander van der Vekens, 13-Nov-2017.) (Revised by AV, 8-Feb-2021.) (Revised by AV, 24-Mar-2021.) (Proof shortened by AV, 30-Oct-2021.)
Hypotheses
Ref Expression
3wlkd.p 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
3wlkd.f 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3wlkd.s (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
3wlkd.n (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
3wlkd.e (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
3wlkd.v 𝑉 = (Vtx‘𝐺)
3wlkd.i 𝐼 = (iEdg‘𝐺)
3trld.n (𝜑 → (𝐽𝐾𝐽𝐿𝐾𝐿))
Assertion
Ref Expression
3trld (𝜑𝐹(Trails‘𝐺)𝑃)

Proof of Theorem 3trld
StepHypRef Expression
1 3wlkd.p . . 3 𝑃 = ⟨“𝐴𝐵𝐶𝐷”⟩
2 3wlkd.f . . 3 𝐹 = ⟨“𝐽𝐾𝐿”⟩
3 3wlkd.s . . 3 (𝜑 → ((𝐴𝑉𝐵𝑉) ∧ (𝐶𝑉𝐷𝑉)))
4 3wlkd.n . . 3 (𝜑 → ((𝐴𝐵𝐴𝐶) ∧ (𝐵𝐶𝐵𝐷) ∧ 𝐶𝐷))
5 3wlkd.e . . 3 (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼𝐾) ∧ {𝐶, 𝐷} ⊆ (𝐼𝐿)))
6 3wlkd.v . . 3 𝑉 = (Vtx‘𝐺)
7 3wlkd.i . . 3 𝐼 = (iEdg‘𝐺)
81, 2, 3, 4, 5, 6, 73wlkd 28266 . 2 (𝜑𝐹(Walks‘𝐺)𝑃)
91, 2, 3, 4, 53wlkdlem7 28262 . . . 4 (𝜑 → (𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V))
10 3trld.n . . . 4 (𝜑 → (𝐽𝐾𝐽𝐿𝐾𝐿))
11 funcnvs3 14492 . . . 4 (((𝐽 ∈ V ∧ 𝐾 ∈ V ∧ 𝐿 ∈ V) ∧ (𝐽𝐾𝐽𝐿𝐾𝐿)) → Fun ⟨“𝐽𝐾𝐿”⟩)
129, 10, 11syl2anc 587 . . 3 (𝜑 → Fun ⟨“𝐽𝐾𝐿”⟩)
132cnveqi 5752 . . . 4 𝐹 = ⟨“𝐽𝐾𝐿”⟩
1413funeqi 6410 . . 3 (Fun 𝐹 ↔ Fun ⟨“𝐽𝐾𝐿”⟩)
1512, 14sylibr 237 . 2 (𝜑 → Fun 𝐹)
16 istrl 27797 . 2 (𝐹(Trails‘𝐺)𝑃 ↔ (𝐹(Walks‘𝐺)𝑃 ∧ Fun 𝐹))
178, 15, 16sylanbrc 586 1 (𝜑𝐹(Trails‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  wne 2941  Vcvv 3415  wss 3875  {cpr 4552   class class class wbr 5062  ccnv 5559  Fun wfun 6383  cfv 6389  ⟨“cs3 14420  ⟨“cs4 14421  Vtxcvtx 27100  iEdgciedg 27101  Walkscwlks 27697  Trailsctrls 27791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818  ax-pre-mulgt0 10819
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-pss 3894  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4829  df-int 4869  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-tr 5171  df-id 5464  df-eprel 5469  df-po 5477  df-so 5478  df-fr 5518  df-we 5520  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-pred 6169  df-ord 6225  df-on 6226  df-lim 6227  df-suc 6228  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-om 7654  df-1st 7770  df-2nd 7771  df-wrecs 8056  df-recs 8117  df-rdg 8155  df-1o 8211  df-er 8400  df-map 8519  df-en 8636  df-dom 8637  df-sdom 8638  df-fin 8639  df-card 9568  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-sub 11077  df-neg 11078  df-nn 11844  df-2 11906  df-3 11907  df-4 11908  df-n0 12104  df-z 12190  df-uz 12452  df-fz 13109  df-fzo 13252  df-hash 13910  df-word 14083  df-concat 14139  df-s1 14166  df-s2 14426  df-s3 14427  df-s4 14428  df-wlks 27700  df-trls 27793
This theorem is referenced by:  3trlond  28269  3pthd  28270  3spthd  28272
  Copyright terms: Public domain W3C validator