![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgristrl | Structured version Visualization version GIF version |
Description: Properties of a pair of functions to be a trail in a pseudograph, definition of walks expanded. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 7-Jan-2021.) (Revised by AV, 29-Oct-2021.) |
Ref | Expression |
---|---|
upgrtrls.v | β’ π = (VtxβπΊ) |
upgrtrls.i | β’ πΌ = (iEdgβπΊ) |
Ref | Expression |
---|---|
upgristrl | β’ (πΊ β UPGraph β (πΉ(TrailsβπΊ)π β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istrl 29526 | . 2 β’ (πΉ(TrailsβπΊ)π β (πΉ(WalksβπΊ)π β§ Fun β‘πΉ)) | |
2 | upgrtrls.v | . . . . 5 β’ π = (VtxβπΊ) | |
3 | upgrtrls.i | . . . . 5 β’ πΌ = (iEdgβπΊ) | |
4 | 2, 3 | upgriswlk 29471 | . . . 4 β’ (πΊ β UPGraph β (πΉ(WalksβπΊ)π β (πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
5 | 4 | anbi1d 629 | . . 3 β’ (πΊ β UPGraph β ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘πΉ))) |
6 | an32 644 | . . . 4 β’ (((πΉ β Word dom πΌ β§ (π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β§ Fun β‘πΉ) β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ (π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) | |
7 | 3anass 1092 | . . . . 5 β’ ((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β (πΉ β Word dom πΌ β§ (π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) | |
8 | 7 | anbi1i 622 | . . . 4 β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘πΉ) β ((πΉ β Word dom πΌ β§ (π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) β§ Fun β‘πΉ)) |
9 | 3anass 1092 | . . . 4 β’ (((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ (π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) | |
10 | 6, 8, 9 | 3bitr4i 302 | . . 3 β’ (((πΉ β Word dom πΌ β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}) β§ Fun β‘πΉ) β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))})) |
11 | 5, 10 | bitrdi 286 | . 2 β’ (πΊ β UPGraph β ((πΉ(WalksβπΊ)π β§ Fun β‘πΉ) β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
12 | 1, 11 | bitrid 282 | 1 β’ (πΊ β UPGraph β (πΉ(TrailsβπΊ)π β ((πΉ β Word dom πΌ β§ Fun β‘πΉ) β§ π:(0...(β―βπΉ))βΆπ β§ βπ β (0..^(β―βπΉ))(πΌβ(πΉβπ)) = {(πβπ), (πβ(π + 1))}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3051 {cpr 4624 class class class wbr 5141 β‘ccnv 5669 dom cdm 5670 Fun wfun 6535 βΆwf 6537 βcfv 6541 (class class class)co 7414 0cc0 11136 1c1 11137 + caddc 11139 ...cfz 13514 ..^cfzo 13657 β―chash 14319 Word cword 14494 Vtxcvtx 28825 iEdgciedg 28826 UPGraphcupgr 28909 Walkscwlks 29426 Trailsctrls 29520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-ifp 1061 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-2o 8484 df-oadd 8487 df-er 8721 df-map 8843 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-fz 13515 df-fzo 13658 df-hash 14320 df-word 14495 df-edg 28877 df-uhgr 28887 df-upgr 28911 df-wlks 29429 df-trls 29522 |
This theorem is referenced by: upgrf1istrl 29533 |
Copyright terms: Public domain | W3C validator |