![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpfi | Structured version Visualization version GIF version |
Description: A Cartesian product of finitely many finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
Ref | Expression |
---|---|
ixpfi | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunfi 9413 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | |
2 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → 𝐴 ∈ Fin) | |
3 | mapfi 9420 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ∈ Fin) | |
4 | 1, 2, 3 | syl2anc 583 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴) ∈ Fin) |
5 | ixpssmap2g 8987 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) | |
6 | 1, 5 | syl 17 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐴)) |
7 | 4, 6 | ssfid 9331 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ∪ ciun 5015 (class class class)co 7450 ↑m cmap 8886 Xcixp 8957 Fincfn 9005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-1o 8524 df-map 8888 df-pm 8889 df-ixp 8958 df-en 9006 df-dom 9007 df-fin 9009 |
This theorem is referenced by: ixpfi2 9422 prdstotbnd 37756 |
Copyright terms: Public domain | W3C validator |