| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version | ||
| Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfi 31008 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 2 | 1 | fovcl 7517 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 ℋchba 30848 ·ih csp 30851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-hfi 31008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: hicli 31010 his5 31015 his35 31017 his7 31019 his2sub 31021 his2sub2 31022 hire 31023 hi01 31025 abshicom 31030 hi2eq 31034 hial2eq2 31036 bcs2 31111 pjhthlem1 31320 normcan 31505 pjspansn 31506 adjsym 31762 cnvadj 31821 adj2 31863 brafn 31876 kbop 31882 kbmul 31884 kbpj 31885 eigvalcl 31890 lnopeqi 31937 riesz3i 31991 cnlnadjlem2 31997 cnlnadjlem7 32002 nmopcoadji 32030 kbass2 32046 kbass5 32049 kbass6 32050 hmopidmpji 32081 pjclem4 32128 pj3si 32136 |
| Copyright terms: Public domain | W3C validator |