![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version |
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi 28512 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
2 | 1 | fovcl 7044 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2107 (class class class)co 6924 ℂcc 10272 ℋchba 28352 ·ih csp 28355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 ax-hfi 28512 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-ov 6927 |
This theorem is referenced by: hicli 28514 his5 28519 his35 28521 his7 28523 his2sub 28525 his2sub2 28526 hire 28527 hi01 28529 abshicom 28534 hi2eq 28538 hial2eq2 28540 bcs2 28615 pjhthlem1 28826 normcan 29011 pjspansn 29012 adjsym 29268 cnvadj 29327 adj2 29369 brafn 29382 kbop 29388 kbmul 29390 kbpj 29391 eigvalcl 29396 lnopeqi 29443 riesz3i 29497 cnlnadjlem2 29503 cnlnadjlem7 29508 nmopcoadji 29536 kbass2 29552 kbass5 29555 kbass6 29556 hmopidmpji 29587 pjclem4 29634 pj3si 29642 |
Copyright terms: Public domain | W3C validator |