Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version |
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi 29014 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
2 | 1 | fovcl 7294 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2114 (class class class)co 7170 ℂcc 10613 ℋchba 28854 ·ih csp 28857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-hfi 29014 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7173 |
This theorem is referenced by: hicli 29016 his5 29021 his35 29023 his7 29025 his2sub 29027 his2sub2 29028 hire 29029 hi01 29031 abshicom 29036 hi2eq 29040 hial2eq2 29042 bcs2 29117 pjhthlem1 29326 normcan 29511 pjspansn 29512 adjsym 29768 cnvadj 29827 adj2 29869 brafn 29882 kbop 29888 kbmul 29890 kbpj 29891 eigvalcl 29896 lnopeqi 29943 riesz3i 29997 cnlnadjlem2 30003 cnlnadjlem7 30008 nmopcoadji 30036 kbass2 30052 kbass5 30055 kbass6 30056 hmopidmpji 30087 pjclem4 30134 pj3si 30142 |
Copyright terms: Public domain | W3C validator |