![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version |
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi 31107 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
2 | 1 | fovcl 7560 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 ℋchba 30947 ·ih csp 30950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-hfi 31107 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 |
This theorem is referenced by: hicli 31109 his5 31114 his35 31116 his7 31118 his2sub 31120 his2sub2 31121 hire 31122 hi01 31124 abshicom 31129 hi2eq 31133 hial2eq2 31135 bcs2 31210 pjhthlem1 31419 normcan 31604 pjspansn 31605 adjsym 31861 cnvadj 31920 adj2 31962 brafn 31975 kbop 31981 kbmul 31983 kbpj 31984 eigvalcl 31989 lnopeqi 32036 riesz3i 32090 cnlnadjlem2 32096 cnlnadjlem7 32101 nmopcoadji 32129 kbass2 32145 kbass5 32148 kbass6 32149 hmopidmpji 32180 pjclem4 32227 pj3si 32235 |
Copyright terms: Public domain | W3C validator |