Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version |
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi 29420 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
2 | 1 | fovcl 7393 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7268 ℂcc 10853 ℋchba 29260 ·ih csp 29263 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-hfi 29420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 |
This theorem is referenced by: hicli 29422 his5 29427 his35 29429 his7 29431 his2sub 29433 his2sub2 29434 hire 29435 hi01 29437 abshicom 29442 hi2eq 29446 hial2eq2 29448 bcs2 29523 pjhthlem1 29732 normcan 29917 pjspansn 29918 adjsym 30174 cnvadj 30233 adj2 30275 brafn 30288 kbop 30294 kbmul 30296 kbpj 30297 eigvalcl 30302 lnopeqi 30349 riesz3i 30403 cnlnadjlem2 30409 cnlnadjlem7 30414 nmopcoadji 30442 kbass2 30458 kbass5 30461 kbass6 30462 hmopidmpji 30493 pjclem4 30540 pj3si 30548 |
Copyright terms: Public domain | W3C validator |