HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicl Structured version   Visualization version   GIF version

Theorem hicl 31062
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hicl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)

Proof of Theorem hicl
StepHypRef Expression
1 ax-hfi 31061 . 2 ·ih :( ℋ × ℋ)⟶ℂ
21fovcl 7480 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  (class class class)co 7352  cc 11011  chba 30901   ·ih csp 30904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-hfi 31061
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355
This theorem is referenced by:  hicli  31063  his5  31068  his35  31070  his7  31072  his2sub  31074  his2sub2  31075  hire  31076  hi01  31078  abshicom  31083  hi2eq  31087  hial2eq2  31089  bcs2  31164  pjhthlem1  31373  normcan  31558  pjspansn  31559  adjsym  31815  cnvadj  31874  adj2  31916  brafn  31929  kbop  31935  kbmul  31937  kbpj  31938  eigvalcl  31943  lnopeqi  31990  riesz3i  32044  cnlnadjlem2  32050  cnlnadjlem7  32055  nmopcoadji  32083  kbass2  32099  kbass5  32102  kbass6  32103  hmopidmpji  32134  pjclem4  32181  pj3si  32189
  Copyright terms: Public domain W3C validator