| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version | ||
| Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfi 31015 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 2 | 1 | fovcl 7520 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 ℋchba 30855 ·ih csp 30858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hfi 31015 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: hicli 31017 his5 31022 his35 31024 his7 31026 his2sub 31028 his2sub2 31029 hire 31030 hi01 31032 abshicom 31037 hi2eq 31041 hial2eq2 31043 bcs2 31118 pjhthlem1 31327 normcan 31512 pjspansn 31513 adjsym 31769 cnvadj 31828 adj2 31870 brafn 31883 kbop 31889 kbmul 31891 kbpj 31892 eigvalcl 31897 lnopeqi 31944 riesz3i 31998 cnlnadjlem2 32004 cnlnadjlem7 32009 nmopcoadji 32037 kbass2 32053 kbass5 32056 kbass6 32057 hmopidmpji 32088 pjclem4 32135 pj3si 32143 |
| Copyright terms: Public domain | W3C validator |