HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicl Structured version   Visualization version   GIF version

Theorem hicl 28513
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hicl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)

Proof of Theorem hicl
StepHypRef Expression
1 ax-hfi 28512 . 2 ·ih :( ℋ × ℋ)⟶ℂ
21fovcl 7044 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wcel 2107  (class class class)co 6924  cc 10272  chba 28352   ·ih csp 28355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140  ax-hfi 28512
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-ov 6927
This theorem is referenced by:  hicli  28514  his5  28519  his35  28521  his7  28523  his2sub  28525  his2sub2  28526  hire  28527  hi01  28529  abshicom  28534  hi2eq  28538  hial2eq2  28540  bcs2  28615  pjhthlem1  28826  normcan  29011  pjspansn  29012  adjsym  29268  cnvadj  29327  adj2  29369  brafn  29382  kbop  29388  kbmul  29390  kbpj  29391  eigvalcl  29396  lnopeqi  29443  riesz3i  29497  cnlnadjlem2  29503  cnlnadjlem7  29508  nmopcoadji  29536  kbass2  29552  kbass5  29555  kbass6  29556  hmopidmpji  29587  pjclem4  29634  pj3si  29642
  Copyright terms: Public domain W3C validator