HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicl Structured version   Visualization version   GIF version

Theorem hicl 31112
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hicl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)

Proof of Theorem hicl
StepHypRef Expression
1 ax-hfi 31111 . 2 ·ih :( ℋ × ℋ)⟶ℂ
21fovcl 7578 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  (class class class)co 7448  cc 11182  chba 30951   ·ih csp 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-hfi 31111
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451
This theorem is referenced by:  hicli  31113  his5  31118  his35  31120  his7  31122  his2sub  31124  his2sub2  31125  hire  31126  hi01  31128  abshicom  31133  hi2eq  31137  hial2eq2  31139  bcs2  31214  pjhthlem1  31423  normcan  31608  pjspansn  31609  adjsym  31865  cnvadj  31924  adj2  31966  brafn  31979  kbop  31985  kbmul  31987  kbpj  31988  eigvalcl  31993  lnopeqi  32040  riesz3i  32094  cnlnadjlem2  32100  cnlnadjlem7  32105  nmopcoadji  32133  kbass2  32149  kbass5  32152  kbass6  32153  hmopidmpji  32184  pjclem4  32231  pj3si  32239
  Copyright terms: Public domain W3C validator