| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version | ||
| Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfi 31006 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 2 | 1 | fovcl 7533 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 ℋchba 30846 ·ih csp 30849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hfi 31006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 |
| This theorem is referenced by: hicli 31008 his5 31013 his35 31015 his7 31017 his2sub 31019 his2sub2 31020 hire 31021 hi01 31023 abshicom 31028 hi2eq 31032 hial2eq2 31034 bcs2 31109 pjhthlem1 31318 normcan 31503 pjspansn 31504 adjsym 31760 cnvadj 31819 adj2 31861 brafn 31874 kbop 31880 kbmul 31882 kbpj 31883 eigvalcl 31888 lnopeqi 31935 riesz3i 31989 cnlnadjlem2 31995 cnlnadjlem7 32000 nmopcoadji 32028 kbass2 32044 kbass5 32047 kbass6 32048 hmopidmpji 32079 pjclem4 32126 pj3si 32134 |
| Copyright terms: Public domain | W3C validator |