| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version | ||
| Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hfi 31054 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
| 2 | 1 | fovcl 7474 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 ℋchba 30894 ·ih csp 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-hfi 31054 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: hicli 31056 his5 31061 his35 31063 his7 31065 his2sub 31067 his2sub2 31068 hire 31069 hi01 31071 abshicom 31076 hi2eq 31080 hial2eq2 31082 bcs2 31157 pjhthlem1 31366 normcan 31551 pjspansn 31552 adjsym 31808 cnvadj 31867 adj2 31909 brafn 31922 kbop 31928 kbmul 31930 kbpj 31931 eigvalcl 31936 lnopeqi 31983 riesz3i 32037 cnlnadjlem2 32043 cnlnadjlem7 32048 nmopcoadji 32076 kbass2 32092 kbass5 32095 kbass6 32096 hmopidmpji 32127 pjclem4 32174 pj3si 32182 |
| Copyright terms: Public domain | W3C validator |