HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hicl Structured version   Visualization version   GIF version

Theorem hicl 29015
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
Assertion
Ref Expression
hicl ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)

Proof of Theorem hicl
StepHypRef Expression
1 ax-hfi 29014 . 2 ·ih :( ℋ × ℋ)⟶ℂ
21fovcl 7294 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2114  (class class class)co 7170  cc 10613  chba 28854   ·ih csp 28857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-hfi 29014
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-fv 6347  df-ov 7173
This theorem is referenced by:  hicli  29016  his5  29021  his35  29023  his7  29025  his2sub  29027  his2sub2  29028  hire  29029  hi01  29031  abshicom  29036  hi2eq  29040  hial2eq2  29042  bcs2  29117  pjhthlem1  29326  normcan  29511  pjspansn  29512  adjsym  29768  cnvadj  29827  adj2  29869  brafn  29882  kbop  29888  kbmul  29890  kbpj  29891  eigvalcl  29896  lnopeqi  29943  riesz3i  29997  cnlnadjlem2  30003  cnlnadjlem7  30008  nmopcoadji  30036  kbass2  30052  kbass5  30055  kbass6  30056  hmopidmpji  30087  pjclem4  30134  pj3si  30142
  Copyright terms: Public domain W3C validator