![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hicl | Structured version Visualization version GIF version |
Description: Closure of inner product. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hfi 31111 | . 2 ⊢ ·ih :( ℋ × ℋ)⟶ℂ | |
2 | 1 | fovcl 7578 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 ℋchba 30951 ·ih csp 30954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-hfi 31111 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 |
This theorem is referenced by: hicli 31113 his5 31118 his35 31120 his7 31122 his2sub 31124 his2sub2 31125 hire 31126 hi01 31128 abshicom 31133 hi2eq 31137 hial2eq2 31139 bcs2 31214 pjhthlem1 31423 normcan 31608 pjspansn 31609 adjsym 31865 cnvadj 31924 adj2 31966 brafn 31979 kbop 31985 kbmul 31987 kbpj 31988 eigvalcl 31993 lnopeqi 32040 riesz3i 32094 cnlnadjlem2 32100 cnlnadjlem7 32105 nmopcoadji 32133 kbass2 32149 kbass5 32152 kbass6 32153 hmopidmpji 32184 pjclem4 32231 pj3si 32239 |
Copyright terms: Public domain | W3C validator |