| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clscld 22934 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 3 | 1 | cldss 22916 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 ‘cfv 6511 Topctop 22780 Clsdccld 22903 clsccl 22905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-top 22781 df-cld 22906 df-cls 22908 |
| This theorem is referenced by: clsidm 22954 elcls2 22961 clsndisj 22962 ntrcls0 22963 neindisj 23004 lpval 23026 lpss 23029 clslp 23035 cnclsi 23159 cncls 23161 isnrm2 23245 lpcls 23251 perfcls 23252 regsep2 23263 clsconn 23317 conncompcld 23321 2ndcsep 23346 1stcelcls 23348 hausllycmp 23381 txcls 23491 ptclsg 23502 imasncls 23579 kqnrmlem1 23630 reghmph 23680 nrmhmph 23681 flimclslem 23871 flimsncls 23873 hauspwpwf1 23874 fclsopn 23901 fclscmpi 23916 cnextfun 23951 clssubg 23996 clsnsg 23997 snclseqg 24003 utop3cls 24139 qdensere 24657 clsocv 25150 relcmpcmet 25218 cncmet 25222 kur14lem3 35195 topbnd 36312 clsun 36316 opnregcld 36318 cldregopn 36319 heibor1lem 37803 qndenserrn 46297 iscnrm3rlem2 48926 |
| Copyright terms: Public domain | W3C validator |