| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clscld 22990 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 3 | 1 | cldss 22972 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 ‘cfv 6536 Topctop 22836 Clsdccld 22959 clsccl 22961 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-top 22837 df-cld 22962 df-cls 22964 |
| This theorem is referenced by: clsidm 23010 elcls2 23017 clsndisj 23018 ntrcls0 23019 neindisj 23060 lpval 23082 lpss 23085 clslp 23091 cnclsi 23215 cncls 23217 isnrm2 23301 lpcls 23307 perfcls 23308 regsep2 23319 clsconn 23373 conncompcld 23377 2ndcsep 23402 1stcelcls 23404 hausllycmp 23437 txcls 23547 ptclsg 23558 imasncls 23635 kqnrmlem1 23686 reghmph 23736 nrmhmph 23737 flimclslem 23927 flimsncls 23929 hauspwpwf1 23930 fclsopn 23957 fclscmpi 23972 cnextfun 24007 clssubg 24052 clsnsg 24053 snclseqg 24059 utop3cls 24195 qdensere 24713 clsocv 25207 relcmpcmet 25275 cncmet 25279 kur14lem3 35235 topbnd 36347 clsun 36351 opnregcld 36353 cldregopn 36354 heibor1lem 37838 qndenserrn 46295 iscnrm3rlem2 48882 |
| Copyright terms: Public domain | W3C validator |