MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss3 Structured version   Visualization version   GIF version

Theorem clsss3 23088
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)

Proof of Theorem clsss3
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 23076 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31cldss 23058 . 2 (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42, 3syl 17 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976   cuni 4931  cfv 6573  Topctop 22920  Clsdccld 23045  clsccl 23047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-top 22921  df-cld 23048  df-cls 23050
This theorem is referenced by:  clsidm  23096  elcls2  23103  clsndisj  23104  ntrcls0  23105  neindisj  23146  lpval  23168  lpss  23171  clslp  23177  cnclsi  23301  cncls  23303  isnrm2  23387  lpcls  23393  perfcls  23394  regsep2  23405  clsconn  23459  conncompcld  23463  2ndcsep  23488  1stcelcls  23490  hausllycmp  23523  txcls  23633  ptclsg  23644  imasncls  23721  kqnrmlem1  23772  reghmph  23822  nrmhmph  23823  flimclslem  24013  flimsncls  24015  hauspwpwf1  24016  fclsopn  24043  fclscmpi  24058  cnextfun  24093  clssubg  24138  clsnsg  24139  snclseqg  24145  utop3cls  24281  qdensere  24811  clsocv  25303  relcmpcmet  25371  cncmet  25375  kur14lem3  35176  topbnd  36290  clsun  36294  opnregcld  36296  cldregopn  36297  heibor1lem  37769  qndenserrn  46220  iscnrm3rlem2  48621
  Copyright terms: Public domain W3C validator