Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version |
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clscld 22198 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
3 | 1 | cldss 22180 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 Clsdccld 22167 clsccl 22169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-cld 22170 df-cls 22172 |
This theorem is referenced by: clsidm 22218 elcls2 22225 clsndisj 22226 ntrcls0 22227 neindisj 22268 lpval 22290 lpss 22293 clslp 22299 cnclsi 22423 cncls 22425 isnrm2 22509 lpcls 22515 perfcls 22516 regsep2 22527 clsconn 22581 conncompcld 22585 2ndcsep 22610 1stcelcls 22612 hausllycmp 22645 txcls 22755 ptclsg 22766 imasncls 22843 kqnrmlem1 22894 reghmph 22944 nrmhmph 22945 flimclslem 23135 flimsncls 23137 hauspwpwf1 23138 fclsopn 23165 fclscmpi 23180 cnextfun 23215 clssubg 23260 clsnsg 23261 snclseqg 23267 utop3cls 23403 qdensere 23933 clsocv 24414 relcmpcmet 24482 cncmet 24486 kur14lem3 33170 topbnd 34513 clsun 34517 opnregcld 34519 cldregopn 34520 heibor1lem 35967 qndenserrn 43840 iscnrm3rlem2 46235 |
Copyright terms: Public domain | W3C validator |