![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version |
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clscld 23076 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
3 | 1 | cldss 23058 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 Clsdccld 23045 clsccl 23047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-cld 23048 df-cls 23050 |
This theorem is referenced by: clsidm 23096 elcls2 23103 clsndisj 23104 ntrcls0 23105 neindisj 23146 lpval 23168 lpss 23171 clslp 23177 cnclsi 23301 cncls 23303 isnrm2 23387 lpcls 23393 perfcls 23394 regsep2 23405 clsconn 23459 conncompcld 23463 2ndcsep 23488 1stcelcls 23490 hausllycmp 23523 txcls 23633 ptclsg 23644 imasncls 23721 kqnrmlem1 23772 reghmph 23822 nrmhmph 23823 flimclslem 24013 flimsncls 24015 hauspwpwf1 24016 fclsopn 24043 fclscmpi 24058 cnextfun 24093 clssubg 24138 clsnsg 24139 snclseqg 24145 utop3cls 24281 qdensere 24811 clsocv 25303 relcmpcmet 25371 cncmet 25375 kur14lem3 35176 topbnd 36290 clsun 36294 opnregcld 36296 cldregopn 36297 heibor1lem 37769 qndenserrn 46220 iscnrm3rlem2 48621 |
Copyright terms: Public domain | W3C validator |