MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss3 Structured version   Visualization version   GIF version

Theorem clsss3 21192
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)

Proof of Theorem clsss3
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 21180 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31cldss 21162 . 2 (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42, 3syl 17 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wss 3769   cuni 4628  cfv 6101  Topctop 21026  Clsdccld 21149  clsccl 21151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-iin 4713  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-top 21027  df-cld 21152  df-cls 21154
This theorem is referenced by:  clsidm  21200  elcls2  21207  clsndisj  21208  ntrcls0  21209  neindisj  21250  lpval  21272  lpss  21275  clslp  21281  cnclsi  21405  cncls  21407  isnrm2  21491  lpcls  21497  perfcls  21498  regsep2  21509  clsconn  21562  conncompcld  21566  2ndcsep  21591  1stcelcls  21593  hausllycmp  21626  txcls  21736  ptclsg  21747  imasncls  21824  kqnrmlem1  21875  reghmph  21925  nrmhmph  21926  flimclslem  22116  flimsncls  22118  hauspwpwf1  22119  fclsopn  22146  fclscmpi  22161  cnextfun  22196  clssubg  22240  clsnsg  22241  snclseqg  22247  utop3cls  22383  qdensere  22901  clsocv  23376  relcmpcmet  23444  cncmet  23448  kur14lem3  31707  topbnd  32831  clsun  32835  opnregcld  32837  cldregopn  32838  heibor1lem  34095  qndenserrn  41262
  Copyright terms: Public domain W3C validator