Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version |
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clscld 21944 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
3 | 1 | cldss 21926 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ∪ cuni 4819 ‘cfv 6380 Topctop 21790 Clsdccld 21913 clsccl 21915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-top 21791 df-cld 21916 df-cls 21918 |
This theorem is referenced by: clsidm 21964 elcls2 21971 clsndisj 21972 ntrcls0 21973 neindisj 22014 lpval 22036 lpss 22039 clslp 22045 cnclsi 22169 cncls 22171 isnrm2 22255 lpcls 22261 perfcls 22262 regsep2 22273 clsconn 22327 conncompcld 22331 2ndcsep 22356 1stcelcls 22358 hausllycmp 22391 txcls 22501 ptclsg 22512 imasncls 22589 kqnrmlem1 22640 reghmph 22690 nrmhmph 22691 flimclslem 22881 flimsncls 22883 hauspwpwf1 22884 fclsopn 22911 fclscmpi 22926 cnextfun 22961 clssubg 23006 clsnsg 23007 snclseqg 23013 utop3cls 23149 qdensere 23667 clsocv 24147 relcmpcmet 24215 cncmet 24219 kur14lem3 32883 topbnd 34250 clsun 34254 opnregcld 34256 cldregopn 34257 heibor1lem 35704 qndenserrn 43515 iscnrm3rlem2 45908 |
Copyright terms: Public domain | W3C validator |