MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss3 Structured version   Visualization version   GIF version

Theorem clsss3 22118
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsss3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)

Proof of Theorem clsss3
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 22106 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31cldss 22088 . 2 (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
42, 3syl 17 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-cld 22078  df-cls 22080
This theorem is referenced by:  clsidm  22126  elcls2  22133  clsndisj  22134  ntrcls0  22135  neindisj  22176  lpval  22198  lpss  22201  clslp  22207  cnclsi  22331  cncls  22333  isnrm2  22417  lpcls  22423  perfcls  22424  regsep2  22435  clsconn  22489  conncompcld  22493  2ndcsep  22518  1stcelcls  22520  hausllycmp  22553  txcls  22663  ptclsg  22674  imasncls  22751  kqnrmlem1  22802  reghmph  22852  nrmhmph  22853  flimclslem  23043  flimsncls  23045  hauspwpwf1  23046  fclsopn  23073  fclscmpi  23088  cnextfun  23123  clssubg  23168  clsnsg  23169  snclseqg  23175  utop3cls  23311  qdensere  23839  clsocv  24319  relcmpcmet  24387  cncmet  24391  kur14lem3  33070  topbnd  34440  clsun  34444  opnregcld  34446  cldregopn  34447  heibor1lem  35894  qndenserrn  43730  iscnrm3rlem2  46123
  Copyright terms: Public domain W3C validator