| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clscld 22965 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 3 | 1 | cldss 22947 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4860 ‘cfv 6488 Topctop 22811 Clsdccld 22934 clsccl 22936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-top 22812 df-cld 22937 df-cls 22939 |
| This theorem is referenced by: clsidm 22985 elcls2 22992 clsndisj 22993 ntrcls0 22994 neindisj 23035 lpval 23057 lpss 23060 clslp 23066 cnclsi 23190 cncls 23192 isnrm2 23276 lpcls 23282 perfcls 23283 regsep2 23294 clsconn 23348 conncompcld 23352 2ndcsep 23377 1stcelcls 23379 hausllycmp 23412 txcls 23522 ptclsg 23533 imasncls 23610 kqnrmlem1 23661 reghmph 23711 nrmhmph 23712 flimclslem 23902 flimsncls 23904 hauspwpwf1 23905 fclsopn 23932 fclscmpi 23947 cnextfun 23982 clssubg 24027 clsnsg 24028 snclseqg 24034 utop3cls 24169 qdensere 24687 clsocv 25180 relcmpcmet 25248 cncmet 25252 kur14lem3 35275 topbnd 36391 clsun 36395 opnregcld 36397 cldregopn 36398 heibor1lem 37872 qndenserrn 46424 iscnrm3rlem2 49068 |
| Copyright terms: Public domain | W3C validator |