![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version |
Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
Ref | Expression |
---|---|
clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | clscld 21180 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
3 | 1 | cldss 21162 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 ∪ cuni 4628 ‘cfv 6101 Topctop 21026 Clsdccld 21149 clsccl 21151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-top 21027 df-cld 21152 df-cls 21154 |
This theorem is referenced by: clsidm 21200 elcls2 21207 clsndisj 21208 ntrcls0 21209 neindisj 21250 lpval 21272 lpss 21275 clslp 21281 cnclsi 21405 cncls 21407 isnrm2 21491 lpcls 21497 perfcls 21498 regsep2 21509 clsconn 21562 conncompcld 21566 2ndcsep 21591 1stcelcls 21593 hausllycmp 21626 txcls 21736 ptclsg 21747 imasncls 21824 kqnrmlem1 21875 reghmph 21925 nrmhmph 21926 flimclslem 22116 flimsncls 22118 hauspwpwf1 22119 fclsopn 22146 fclscmpi 22161 cnextfun 22196 clssubg 22240 clsnsg 22241 snclseqg 22247 utop3cls 22383 qdensere 22901 clsocv 23376 relcmpcmet 23444 cncmet 23448 kur14lem3 31707 topbnd 32831 clsun 32835 opnregcld 32837 cldregopn 32838 heibor1lem 34095 qndenserrn 41262 |
Copyright terms: Public domain | W3C validator |