| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clscld 22950 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 3 | 1 | cldss 22932 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 ‘cfv 6486 Topctop 22796 Clsdccld 22919 clsccl 22921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-top 22797 df-cld 22922 df-cls 22924 |
| This theorem is referenced by: clsidm 22970 elcls2 22977 clsndisj 22978 ntrcls0 22979 neindisj 23020 lpval 23042 lpss 23045 clslp 23051 cnclsi 23175 cncls 23177 isnrm2 23261 lpcls 23267 perfcls 23268 regsep2 23279 clsconn 23333 conncompcld 23337 2ndcsep 23362 1stcelcls 23364 hausllycmp 23397 txcls 23507 ptclsg 23518 imasncls 23595 kqnrmlem1 23646 reghmph 23696 nrmhmph 23697 flimclslem 23887 flimsncls 23889 hauspwpwf1 23890 fclsopn 23917 fclscmpi 23932 cnextfun 23967 clssubg 24012 clsnsg 24013 snclseqg 24019 utop3cls 24155 qdensere 24673 clsocv 25166 relcmpcmet 25234 cncmet 25238 kur14lem3 35183 topbnd 36300 clsun 36304 opnregcld 36306 cldregopn 36307 heibor1lem 37791 qndenserrn 46284 iscnrm3rlem2 48929 |
| Copyright terms: Public domain | W3C validator |