| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clsss3 | Structured version Visualization version GIF version | ||
| Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007.) |
| Ref | Expression |
|---|---|
| clscld.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| clsss3 | ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clscld 22963 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽)) |
| 3 | 1 | cldss 22945 | . 2 ⊢ (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 4 | 2, 3 | syl 17 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 ‘cfv 6481 Topctop 22809 Clsdccld 22932 clsccl 22934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-top 22810 df-cld 22935 df-cls 22937 |
| This theorem is referenced by: clsidm 22983 elcls2 22990 clsndisj 22991 ntrcls0 22992 neindisj 23033 lpval 23055 lpss 23058 clslp 23064 cnclsi 23188 cncls 23190 isnrm2 23274 lpcls 23280 perfcls 23281 regsep2 23292 clsconn 23346 conncompcld 23350 2ndcsep 23375 1stcelcls 23377 hausllycmp 23410 txcls 23520 ptclsg 23531 imasncls 23608 kqnrmlem1 23659 reghmph 23709 nrmhmph 23710 flimclslem 23900 flimsncls 23902 hauspwpwf1 23903 fclsopn 23930 fclscmpi 23945 cnextfun 23980 clssubg 24025 clsnsg 24026 snclseqg 24032 utop3cls 24167 qdensere 24685 clsocv 25178 relcmpcmet 25246 cncmet 25250 kur14lem3 35250 topbnd 36364 clsun 36368 opnregcld 36370 cldregopn 36371 heibor1lem 37855 qndenserrn 46343 iscnrm3rlem2 48978 |
| Copyright terms: Public domain | W3C validator |