MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsidm Structured version   Visualization version   GIF version

Theorem clsidm 23056
Description: The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsidm ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))

Proof of Theorem clsidm
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 23036 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31clsss3 23048 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
41iscld3 23053 . . 3 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
53, 4syldan 589 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
62, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wss 3946   cuni 4905  cfv 6543  Topctop 22880  Clsdccld 23005  clsccl 23007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22881  df-cld 23008  df-cls 23010
This theorem is referenced by:  kur14lem5  35048  opnregcld  36052
  Copyright terms: Public domain W3C validator