MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsidm Structured version   Visualization version   GIF version

Theorem clsidm 22570
Description: The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsidm ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))

Proof of Theorem clsidm
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 22550 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31clsss3 22562 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
41iscld3 22567 . . 3 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
53, 4syldan 591 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
62, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3948   cuni 4908  cfv 6543  Topctop 22394  Clsdccld 22519  clsccl 22521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22395  df-cld 22522  df-cls 22524
This theorem is referenced by:  kur14lem5  34196  opnregcld  35210
  Copyright terms: Public domain W3C validator