MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsidm Structured version   Visualization version   GIF version

Theorem clsidm 22441
Description: The closure operation is idempotent. (Contributed by NM, 2-Oct-2007.)
Hypothesis
Ref Expression
clscld.1 𝑋 = 𝐽
Assertion
Ref Expression
clsidm ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))

Proof of Theorem clsidm
StepHypRef Expression
1 clscld.1 . . 3 𝑋 = 𝐽
21clscld 22421 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽))
31clsss3 22433 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
41iscld3 22438 . . 3 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘𝑆) ⊆ 𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
53, 4syldan 592 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (((cls‘𝐽)‘𝑆) ∈ (Clsd‘𝐽) ↔ ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆)))
62, 5mpbid 231 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘((cls‘𝐽)‘𝑆)) = ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3914   cuni 4869  cfv 6500  Topctop 22265  Clsdccld 22390  clsccl 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-top 22266  df-cld 22393  df-cls 22395
This theorem is referenced by:  kur14lem5  33868  opnregcld  34855
  Copyright terms: Public domain W3C validator