Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdsca Structured version   Visualization version   GIF version

Theorem lcdsca 39622
Description: The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
lcdsca.h 𝐻 = (LHyp‘𝐾)
lcdsca.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdsca.f 𝐹 = (Scalar‘𝑈)
lcdsca.o 𝑂 = (oppr𝐹)
lcdsca.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdsca.r 𝑅 = (Scalar‘𝐶)
lcdsca.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdsca (𝜑𝑅 = 𝑂)

Proof of Theorem lcdsca
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdsca.r . 2 𝑅 = (Scalar‘𝐶)
2 lcdsca.h . . . . . 6 𝐻 = (LHyp‘𝐾)
3 eqid 2740 . . . . . 6 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
4 lcdsca.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
5 lcdsca.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 eqid 2740 . . . . . 6 (LFnl‘𝑈) = (LFnl‘𝑈)
7 eqid 2740 . . . . . 6 (LKer‘𝑈) = (LKer‘𝑈)
8 eqid 2740 . . . . . 6 (LDual‘𝑈) = (LDual‘𝑈)
9 lcdsca.k . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
102, 3, 4, 5, 6, 7, 8, 9lcdval 39612 . . . . 5 (𝜑𝐶 = ((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1110fveq2d 6775 . . . 4 (𝜑 → (Scalar‘𝐶) = (Scalar‘((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
12 fvex 6784 . . . . . 6 (LFnl‘𝑈) ∈ V
1312rabex 5260 . . . . 5 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V
14 eqid 2740 . . . . . 6 ((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = ((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
15 eqid 2740 . . . . . 6 (Scalar‘(LDual‘𝑈)) = (Scalar‘(LDual‘𝑈))
1614, 15resssca 17064 . . . . 5 ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → (Scalar‘(LDual‘𝑈)) = (Scalar‘((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
1713, 16ax-mp 5 . . . 4 (Scalar‘(LDual‘𝑈)) = (Scalar‘((LDual‘𝑈) ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1811, 17eqtr4di 2798 . . 3 (𝜑 → (Scalar‘𝐶) = (Scalar‘(LDual‘𝑈)))
19 lcdsca.f . . . 4 𝐹 = (Scalar‘𝑈)
20 lcdsca.o . . . 4 𝑂 = (oppr𝐹)
212, 5, 9dvhlmod 39133 . . . 4 (𝜑𝑈 ∈ LMod)
2219, 20, 8, 15, 21ldualsca 37155 . . 3 (𝜑 → (Scalar‘(LDual‘𝑈)) = 𝑂)
2318, 22eqtrd 2780 . 2 (𝜑 → (Scalar‘𝐶) = 𝑂)
241, 23eqtrid 2792 1 (𝜑𝑅 = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  {crab 3070  Vcvv 3431  cfv 6432  (class class class)co 7272  s cress 16952  Scalarcsca 16976  opprcoppr 19872  LModclmod 20134  LFnlclfn 37080  LKerclk 37108  LDualcld 37146  HLchlt 37373  LHypclh 38007  DVecHcdvh 39101  ocHcoch 39370  LCDualclcd 39609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-riotaBAD 36976
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-tpos 8034  df-undef 8081  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-er 8490  df-map 8609  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-n0 12245  df-z 12331  df-uz 12594  df-fz 13251  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-sca 16989  df-vsca 16990  df-0g 17163  df-proset 18024  df-poset 18042  df-plt 18059  df-lub 18075  df-glb 18076  df-join 18077  df-meet 18078  df-p0 18154  df-p1 18155  df-lat 18161  df-clat 18228  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-grp 18591  df-minusg 18592  df-mgp 19732  df-ur 19749  df-ring 19796  df-oppr 19873  df-dvdsr 19894  df-unit 19895  df-invr 19925  df-dvr 19936  df-drng 20004  df-lmod 20136  df-lvec 20376  df-ldual 37147  df-oposet 37199  df-ol 37201  df-oml 37202  df-covers 37289  df-ats 37290  df-atl 37321  df-cvlat 37345  df-hlat 37374  df-llines 37521  df-lplanes 37522  df-lvols 37523  df-lines 37524  df-psubsp 37526  df-pmap 37527  df-padd 37819  df-lhyp 38011  df-laut 38012  df-ldil 38127  df-ltrn 38128  df-trl 38182  df-tendo 38778  df-edring 38780  df-dvech 39102  df-lcdual 39610
This theorem is referenced by:  lcdsbase  39623  lcdsadd  39624  lcdsmul  39625  lcd0  39631  lcd1  39632  lcdneg  39633  lcdvsub  39640
  Copyright terms: Public domain W3C validator