![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvs | Structured version Visualization version GIF version |
Description: Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.) |
Ref | Expression |
---|---|
lcdvs.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvs.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcdvs.t | ⊢ · = ( ·𝑠 ‘𝐷) |
lcdvs.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvs.m | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
lcdvs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcdvs | ⊢ (𝜑 → ∙ = · ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvs.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2725 | . . . 4 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | lcdvs.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | lcdvs.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2725 | . . . 4 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
6 | eqid 2725 | . . . 4 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
7 | lcdvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcdvs.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41192 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) |
10 | 9 | fveq2d 6900 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐶) = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) |
11 | lcdvs.m | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
12 | fvex 6909 | . . . 4 ⊢ (LFnl‘𝑈) ∈ V | |
13 | 12 | rabex 5335 | . . 3 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V |
14 | eqid 2725 | . . . 4 ⊢ (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) | |
15 | lcdvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
16 | 14, 15 | ressvsca 17328 | . . 3 ⊢ ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → · = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) |
17 | 13, 16 | ax-mp 5 | . 2 ⊢ · = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) |
18 | 10, 11, 17 | 3eqtr4g 2790 | 1 ⊢ (𝜑 → ∙ = · ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3418 Vcvv 3461 ‘cfv 6549 (class class class)co 7419 ↾s cress 17212 ·𝑠 cvsca 17240 LFnlclfn 38659 LKerclk 38687 LDualcld 38725 HLchlt 38952 LHypclh 39587 DVecHcdvh 40681 ocHcoch 40950 LCDualclcd 41189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-vsca 17253 df-lcdual 41190 |
This theorem is referenced by: lcdvsval 41207 lcdlkreq2N 41226 |
Copyright terms: Public domain | W3C validator |