|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvs | Structured version Visualization version GIF version | ||
| Description: Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| lcdvs.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| lcdvs.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| lcdvs.d | ⊢ 𝐷 = (LDual‘𝑈) | 
| lcdvs.t | ⊢ · = ( ·𝑠 ‘𝐷) | 
| lcdvs.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| lcdvs.m | ⊢ ∙ = ( ·𝑠 ‘𝐶) | 
| lcdvs.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| Ref | Expression | 
|---|---|
| lcdvs | ⊢ (𝜑 → ∙ = · ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lcdvs.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | eqid 2737 | . . . 4 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
| 3 | lcdvs.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 4 | lcdvs.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | eqid 2737 | . . . 4 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
| 6 | eqid 2737 | . . . 4 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
| 7 | lcdvs.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
| 8 | lcdvs.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41591 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) | 
| 10 | 9 | fveq2d 6910 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝐶) = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) | 
| 11 | lcdvs.m | . 2 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 12 | fvex 6919 | . . . 4 ⊢ (LFnl‘𝑈) ∈ V | |
| 13 | 12 | rabex 5339 | . . 3 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V | 
| 14 | eqid 2737 | . . . 4 ⊢ (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) | |
| 15 | lcdvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 16 | 14, 15 | ressvsca 17388 | . . 3 ⊢ ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → · = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) | 
| 17 | 13, 16 | ax-mp 5 | . 2 ⊢ · = ( ·𝑠 ‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) | 
| 18 | 10, 11, 17 | 3eqtr4g 2802 | 1 ⊢ (𝜑 → ∙ = · ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ‘cfv 6561 (class class class)co 7431 ↾s cress 17274 ·𝑠 cvsca 17301 LFnlclfn 39058 LKerclk 39086 LDualcld 39124 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 ocHcoch 41349 LCDualclcd 41588 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-vsca 17314 df-lcdual 41589 | 
| This theorem is referenced by: lcdvsval 41606 lcdlkreq2N 41625 | 
| Copyright terms: Public domain | W3C validator |