Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvadd Structured version   Visualization version   GIF version

Theorem lcdvadd 41635
Description: Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
Hypotheses
Ref Expression
lcdvadd.h 𝐻 = (LHyp‘𝐾)
lcdvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvadd.d 𝐷 = (LDual‘𝑈)
lcdvadd.a + = (+g𝐷)
lcdvadd.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvadd.p = (+g𝐶)
lcdvadd.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdvadd (𝜑 = + )

Proof of Theorem lcdvadd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2731 . . . 4 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
3 lcdvadd.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2731 . . . 4 (LFnl‘𝑈) = (LFnl‘𝑈)
6 eqid 2731 . . . 4 (LKer‘𝑈) = (LKer‘𝑈)
7 lcdvadd.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcdvadd.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 41627 . . 3 (𝜑𝐶 = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
109fveq2d 6826 . 2 (𝜑 → (+g𝐶) = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
11 lcdvadd.p . 2 = (+g𝐶)
12 fvex 6835 . . . 4 (LFnl‘𝑈) ∈ V
1312rabex 5277 . . 3 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V
14 eqid 2731 . . . 4 (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
15 lcdvadd.a . . . 4 + = (+g𝐷)
1614, 15ressplusg 17192 . . 3 ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → + = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
1713, 16ax-mp 5 . 2 + = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1810, 11, 173eqtr4g 2791 1 (𝜑 = + )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  cfv 6481  (class class class)co 7346  s cress 17138  +gcplusg 17158  LFnlclfn 39095  LKerclk 39123  LDualcld 39161  HLchlt 39388  LHypclh 40022  DVecHcdvh 41116  ocHcoch 41385  LCDualclcd 41624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-lcdual 41625
This theorem is referenced by:  lcdvaddval  41636
  Copyright terms: Public domain W3C validator