Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvadd Structured version   Visualization version   GIF version

Theorem lcdvadd 41591
Description: Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
Hypotheses
Ref Expression
lcdvadd.h 𝐻 = (LHyp‘𝐾)
lcdvadd.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lcdvadd.d 𝐷 = (LDual‘𝑈)
lcdvadd.a + = (+g𝐷)
lcdvadd.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
lcdvadd.p = (+g𝐶)
lcdvadd.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
lcdvadd (𝜑 = + )

Proof of Theorem lcdvadd
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 lcdvadd.h . . . 4 𝐻 = (LHyp‘𝐾)
2 eqid 2729 . . . 4 ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊)
3 lcdvadd.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 lcdvadd.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2729 . . . 4 (LFnl‘𝑈) = (LFnl‘𝑈)
6 eqid 2729 . . . 4 (LKer‘𝑈) = (LKer‘𝑈)
7 lcdvadd.d . . . 4 𝐷 = (LDual‘𝑈)
8 lcdvadd.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5, 6, 7, 8lcdval 41583 . . 3 (𝜑𝐶 = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
109fveq2d 6862 . 2 (𝜑 → (+g𝐶) = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
11 lcdvadd.p . 2 = (+g𝐶)
12 fvex 6871 . . . 4 (LFnl‘𝑈) ∈ V
1312rabex 5294 . . 3 {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V
14 eqid 2729 . . . 4 (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})
15 lcdvadd.a . . . 4 + = (+g𝐷)
1614, 15ressplusg 17254 . . 3 ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → + = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})))
1713, 16ax-mp 5 . 2 + = (+g‘(𝐷s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))
1810, 11, 173eqtr4g 2789 1 (𝜑 = + )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cfv 6511  (class class class)co 7387  s cress 17200  +gcplusg 17220  LFnlclfn 39050  LKerclk 39078  LDualcld 39116  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  ocHcoch 41341  LCDualclcd 41580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-lcdual 41581
This theorem is referenced by:  lcdvaddval  41592
  Copyright terms: Public domain W3C validator