![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvadd | Structured version Visualization version GIF version |
Description: Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.) |
Ref | Expression |
---|---|
lcdvadd.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvadd.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvadd.d | ⊢ 𝐷 = (LDual‘𝑈) |
lcdvadd.a | ⊢ + = (+g‘𝐷) |
lcdvadd.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvadd.p | ⊢ ✚ = (+g‘𝐶) |
lcdvadd.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
lcdvadd | ⊢ (𝜑 → ✚ = + ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvadd.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2728 | . . . 4 ⊢ ((ocH‘𝐾)‘𝑊) = ((ocH‘𝐾)‘𝑊) | |
3 | lcdvadd.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
4 | lcdvadd.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2728 | . . . 4 ⊢ (LFnl‘𝑈) = (LFnl‘𝑈) | |
6 | eqid 2728 | . . . 4 ⊢ (LKer‘𝑈) = (LKer‘𝑈) | |
7 | lcdvadd.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑈) | |
8 | lcdvadd.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lcdval 41094 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) |
10 | 9 | fveq2d 6906 | . 2 ⊢ (𝜑 → (+g‘𝐶) = (+g‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) |
11 | lcdvadd.p | . 2 ⊢ ✚ = (+g‘𝐶) | |
12 | fvex 6915 | . . . 4 ⊢ (LFnl‘𝑈) ∈ V | |
13 | 12 | rabex 5338 | . . 3 ⊢ {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V |
14 | eqid 2728 | . . . 4 ⊢ (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) = (𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}) | |
15 | lcdvadd.a | . . . 4 ⊢ + = (+g‘𝐷) | |
16 | 14, 15 | ressplusg 17278 | . . 3 ⊢ ({𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)} ∈ V → + = (+g‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)}))) |
17 | 13, 16 | ax-mp 5 | . 2 ⊢ + = (+g‘(𝐷 ↾s {𝑓 ∈ (LFnl‘𝑈) ∣ (((ocH‘𝐾)‘𝑊)‘(((ocH‘𝐾)‘𝑊)‘((LKer‘𝑈)‘𝑓))) = ((LKer‘𝑈)‘𝑓)})) |
18 | 10, 11, 17 | 3eqtr4g 2793 | 1 ⊢ (𝜑 → ✚ = + ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {crab 3430 Vcvv 3473 ‘cfv 6553 (class class class)co 7426 ↾s cress 17216 +gcplusg 17240 LFnlclfn 38561 LKerclk 38589 LDualcld 38627 HLchlt 38854 LHypclh 39489 DVecHcdvh 40583 ocHcoch 40852 LCDualclcd 41091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-lcdual 41092 |
This theorem is referenced by: lcdvaddval 41103 |
Copyright terms: Public domain | W3C validator |