![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcd0v | Structured version Visualization version GIF version |
Description: The zero functional in the set of functionals with closed kernels. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
lcd0v.h | β’ π» = (LHypβπΎ) |
lcd0v.u | β’ π = ((DVecHβπΎ)βπ) |
lcd0v.v | β’ π = (Baseβπ) |
lcd0v.r | β’ π = (Scalarβπ) |
lcd0v.z | β’ 0 = (0gβπ ) |
lcd0v.c | β’ πΆ = ((LCDualβπΎ)βπ) |
lcd0v.o | β’ π = (0gβπΆ) |
lcd0v.k | β’ (π β (πΎ β HL β§ π β π»)) |
Ref | Expression |
---|---|
lcd0v | β’ (π β π = (π Γ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcd0v.o | . . 3 β’ π = (0gβπΆ) | |
2 | lcd0v.h | . . . . 5 β’ π» = (LHypβπΎ) | |
3 | eqid 2731 | . . . . 5 β’ ((ocHβπΎ)βπ) = ((ocHβπΎ)βπ) | |
4 | lcd0v.c | . . . . 5 β’ πΆ = ((LCDualβπΎ)βπ) | |
5 | lcd0v.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
6 | eqid 2731 | . . . . 5 β’ (LFnlβπ) = (LFnlβπ) | |
7 | eqid 2731 | . . . . 5 β’ (LKerβπ) = (LKerβπ) | |
8 | eqid 2731 | . . . . 5 β’ (LDualβπ) = (LDualβπ) | |
9 | lcd0v.k | . . . . 5 β’ (π β (πΎ β HL β§ π β π»)) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | lcdval 40764 | . . . 4 β’ (π β πΆ = ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)})) |
11 | 10 | fveq2d 6895 | . . 3 β’ (π β (0gβπΆ) = (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)}))) |
12 | 1, 11 | eqtrid 2783 | . 2 β’ (π β π = (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)}))) |
13 | 2, 5, 9 | dvhlmod 40285 | . . . 4 β’ (π β π β LMod) |
14 | 8, 13 | lduallmod 38327 | . . 3 β’ (π β (LDualβπ) β LMod) |
15 | eqid 2731 | . . . 4 β’ (LSubSpβ(LDualβπ)) = (LSubSpβ(LDualβπ)) | |
16 | eqid 2731 | . . . 4 β’ {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)} = {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)} | |
17 | 2, 5, 3, 6, 7, 8, 15, 16, 9 | lclkr 40708 | . . 3 β’ (π β {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)} β (LSubSpβ(LDualβπ))) |
18 | eqid 2731 | . . . 4 β’ ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)}) = ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)}) | |
19 | eqid 2731 | . . . 4 β’ (0gβ(LDualβπ)) = (0gβ(LDualβπ)) | |
20 | eqid 2731 | . . . 4 β’ (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)})) = (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)})) | |
21 | 18, 19, 20, 15 | lss0v 20772 | . . 3 β’ (((LDualβπ) β LMod β§ {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)} β (LSubSpβ(LDualβπ))) β (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)})) = (0gβ(LDualβπ))) |
22 | 14, 17, 21 | syl2anc 583 | . 2 β’ (π β (0gβ((LDualβπ) βΎs {π β (LFnlβπ) β£ (((ocHβπΎ)βπ)β(((ocHβπΎ)βπ)β((LKerβπ)βπ))) = ((LKerβπ)βπ)})) = (0gβ(LDualβπ))) |
23 | lcd0v.v | . . 3 β’ π = (Baseβπ) | |
24 | lcd0v.r | . . 3 β’ π = (Scalarβπ) | |
25 | lcd0v.z | . . 3 β’ 0 = (0gβπ ) | |
26 | 23, 24, 25, 8, 19, 13 | ldual0v 38324 | . 2 β’ (π β (0gβ(LDualβπ)) = (π Γ { 0 })) |
27 | 12, 22, 26 | 3eqtrd 2775 | 1 β’ (π β π = (π Γ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 {crab 3431 {csn 4628 Γ cxp 5674 βcfv 6543 (class class class)co 7412 Basecbs 17149 βΎs cress 17178 Scalarcsca 17205 0gc0g 17390 LModclmod 20615 LSubSpclss 20687 LFnlclfn 38231 LKerclk 38259 LDualcld 38297 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 ocHcoch 40522 LCDualclcd 40761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-undef 8261 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-mre 17535 df-mrc 17536 df-acs 17538 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-oppg 19252 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lsatoms 38150 df-lshyp 38151 df-lcv 38193 df-lfl 38232 df-lkr 38260 df-ldual 38298 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tgrp 39918 df-tendo 39930 df-edring 39932 df-dveca 40178 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 df-doch 40523 df-djh 40570 df-lcdual 40762 |
This theorem is referenced by: lcd0v2 40787 lcd0vvalN 40788 mapd0 40840 hdmaplkr 41088 |
Copyright terms: Public domain | W3C validator |