MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leord1 Structured version   Visualization version   GIF version

Theorem leord1 11245
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
leord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑀𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem leord1
StepHypRef Expression
1 ltord.1 . . . . 5 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.3 . . . . 5 (𝑥 = 𝐷𝐴 = 𝑁)
3 ltord.2 . . . . 5 (𝑥 = 𝐶𝐴 = 𝑀)
4 ltord.4 . . . . 5 𝑆 ⊆ ℝ
5 ltord.5 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltord1 11244 . . . 4 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
87ancom2s 650 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
98notbid 321 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ 𝐷 < 𝐶 ↔ ¬ 𝑁 < 𝑀))
104sseli 3873 . . . 4 (𝐶𝑆𝐶 ∈ ℝ)
114sseli 3873 . . . 4 (𝐷𝑆𝐷 ∈ ℝ)
12 lenlt 10797 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
1310, 11, 12syl2an 599 . . 3 ((𝐶𝑆𝐷𝑆) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
1413adantl 485 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
155ralrimiva 3096 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
163eleq1d 2817 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1716rspccva 3525 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
1815, 17sylan 583 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
1918adantrr 717 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
202eleq1d 2817 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2120rspccva 3525 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2215, 21sylan 583 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2322adantrl 716 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
2419, 23lenltd 10864 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
259, 14, 243bitr4d 314 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wral 3053  wss 3843   class class class wbr 5030  cr 10614   < clt 10753  cle 10754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-pre-lttri 10689
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759
This theorem is referenced by:  eqord1  11246  leord2  11248  lermxnn0  40344  lermy  40349
  Copyright terms: Public domain W3C validator