Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leord1 | Structured version Visualization version GIF version |
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
ltord.4 | ⊢ 𝑆 ⊆ ℝ |
ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
ltord.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
Ref | Expression |
---|---|
leord1 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑀 ≤ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltord.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
2 | ltord.3 | . . . . 5 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
3 | ltord.2 | . . . . 5 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
4 | ltord.4 | . . . . 5 ⊢ 𝑆 ⊆ ℝ | |
5 | ltord.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
6 | ltord.6 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) | |
7 | 1, 2, 3, 4, 5, 6 | ltord1 11244 | . . . 4 ⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐷 < 𝐶 ↔ 𝑁 < 𝑀)) |
8 | 7 | ancom2s 650 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐷 < 𝐶 ↔ 𝑁 < 𝑀)) |
9 | 8 | notbid 321 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (¬ 𝐷 < 𝐶 ↔ ¬ 𝑁 < 𝑀)) |
10 | 4 | sseli 3873 | . . . 4 ⊢ (𝐶 ∈ 𝑆 → 𝐶 ∈ ℝ) |
11 | 4 | sseli 3873 | . . . 4 ⊢ (𝐷 ∈ 𝑆 → 𝐷 ∈ ℝ) |
12 | lenlt 10797 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 ≤ 𝐷 ↔ ¬ 𝐷 < 𝐶)) | |
13 | 10, 11, 12 | syl2an 599 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → (𝐶 ≤ 𝐷 ↔ ¬ 𝐷 < 𝐶)) |
14 | 13 | adantl 485 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ ¬ 𝐷 < 𝐶)) |
15 | 5 | ralrimiva 3096 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
16 | 3 | eleq1d 2817 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
17 | 16 | rspccva 3525 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
18 | 15, 17 | sylan 583 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
19 | 18 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
20 | 2 | eleq1d 2817 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
21 | 20 | rspccva 3525 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
22 | 15, 21 | sylan 583 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
23 | 22 | adantrl 716 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
24 | 19, 23 | lenltd 10864 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
25 | 9, 14, 24 | 3bitr4d 314 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑀 ≤ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 ⊆ wss 3843 class class class wbr 5030 ℝcr 10614 < clt 10753 ≤ cle 10754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-pre-lttri 10689 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 |
This theorem is referenced by: eqord1 11246 leord2 11248 lermxnn0 40344 lermy 40349 |
Copyright terms: Public domain | W3C validator |