MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leord1 Structured version   Visualization version   GIF version

Theorem leord1 11769
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
leord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑀𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem leord1
StepHypRef Expression
1 ltord.1 . . . . 5 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.3 . . . . 5 (𝑥 = 𝐷𝐴 = 𝑁)
3 ltord.2 . . . . 5 (𝑥 = 𝐶𝐴 = 𝑀)
4 ltord.4 . . . . 5 𝑆 ⊆ ℝ
5 ltord.5 . . . . 5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6ltord1 11768 . . . 4 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
87ancom2s 650 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷 < 𝐶𝑁 < 𝑀))
98notbid 318 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (¬ 𝐷 < 𝐶 ↔ ¬ 𝑁 < 𝑀))
104sseli 3959 . . . 4 (𝐶𝑆𝐶 ∈ ℝ)
114sseli 3959 . . . 4 (𝐷𝑆𝐷 ∈ ℝ)
12 lenlt 11318 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
1310, 11, 12syl2an 596 . . 3 ((𝐶𝑆𝐷𝑆) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
1413adantl 481 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷 ↔ ¬ 𝐷 < 𝐶))
155ralrimiva 3133 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
163eleq1d 2820 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1716rspccva 3605 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
1815, 17sylan 580 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
1918adantrr 717 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
202eleq1d 2820 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2120rspccva 3605 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2215, 21sylan 580 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2322adantrl 716 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
2419, 23lenltd 11386 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀𝑁 ↔ ¬ 𝑁 < 𝑀))
259, 14, 243bitr4d 311 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  wss 3931   class class class wbr 5124  cr 11133   < clt 11274  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-pre-lttri 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by:  eqord1  11770  leord2  11772  lermxnn0  42941  lermy  42946
  Copyright terms: Public domain W3C validator