| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqord1 | Structured version Visualization version GIF version | ||
| Description: A strictly increasing real function on a subset of ℝ is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.) |
| Ref | Expression |
|---|---|
| ltord.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| ltord.2 | ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) |
| ltord.3 | ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) |
| ltord.4 | ⊢ 𝑆 ⊆ ℝ |
| ltord.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) |
| ltord.6 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) |
| Ref | Expression |
|---|---|
| eqord1 | ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltord.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 2 | ltord.2 | . . . 4 ⊢ (𝑥 = 𝐶 → 𝐴 = 𝑀) | |
| 3 | ltord.3 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐴 = 𝑁) | |
| 4 | ltord.4 | . . . 4 ⊢ 𝑆 ⊆ ℝ | |
| 5 | ltord.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝐴 ∈ ℝ) | |
| 6 | ltord.6 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 < 𝑦 → 𝐴 < 𝐵)) | |
| 7 | 1, 2, 3, 4, 5, 6 | leord1 11772 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 ≤ 𝐷 ↔ 𝑀 ≤ 𝑁)) |
| 8 | 1, 3, 2, 4, 5, 6 | leord1 11772 | . . . 4 ⊢ ((𝜑 ∧ (𝐷 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐷 ≤ 𝐶 ↔ 𝑁 ≤ 𝑀)) |
| 9 | 8 | ancom2s 650 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐷 ≤ 𝐶 ↔ 𝑁 ≤ 𝑀)) |
| 10 | 7, 9 | anbi12d 632 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → ((𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶) ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 11 | 4 | sseli 3959 | . . . 4 ⊢ (𝐶 ∈ 𝑆 → 𝐶 ∈ ℝ) |
| 12 | 4 | sseli 3959 | . . . 4 ⊢ (𝐷 ∈ 𝑆 → 𝐷 ∈ ℝ) |
| 13 | letri3 11328 | . . . 4 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) | |
| 14 | 11, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) |
| 15 | 14 | adantl 481 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ (𝐶 ≤ 𝐷 ∧ 𝐷 ≤ 𝐶))) |
| 16 | 5 | ralrimiva 3133 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ) |
| 17 | 2 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ)) |
| 18 | 17 | rspccva 3604 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 19 | 16, 18 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ∈ 𝑆) → 𝑀 ∈ ℝ) |
| 20 | 19 | adantrr 717 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑀 ∈ ℝ) |
| 21 | 3 | eleq1d 2818 | . . . . . 6 ⊢ (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ)) |
| 22 | 21 | rspccva 3604 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝑆 𝐴 ∈ ℝ ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 23 | 16, 22 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐷 ∈ 𝑆) → 𝑁 ∈ ℝ) |
| 24 | 23 | adantrl 716 | . . 3 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → 𝑁 ∈ ℝ) |
| 25 | 20, 24 | letri3d 11385 | . 2 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝑀 = 𝑁 ↔ (𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀))) |
| 26 | 10, 15, 25 | 3bitr4d 311 | 1 ⊢ ((𝜑 ∧ (𝐶 ∈ 𝑆 ∧ 𝐷 ∈ 𝑆)) → (𝐶 = 𝐷 ↔ 𝑀 = 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ⊆ wss 3931 class class class wbr 5123 ℝcr 11136 < clt 11277 ≤ cle 11278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 |
| This theorem is referenced by: eqord2 11776 expcan 14192 ovolicc2lem3 25491 rmyeq0 42943 rmyeq 42944 |
| Copyright terms: Public domain | W3C validator |