MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqord1 Structured version   Visualization version   GIF version

Theorem eqord1 11651
Description: A strictly increasing real function on a subset of is one-to-one. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1 (𝑥 = 𝑦𝐴 = 𝐵)
ltord.2 (𝑥 = 𝐶𝐴 = 𝑀)
ltord.3 (𝑥 = 𝐷𝐴 = 𝑁)
ltord.4 𝑆 ⊆ ℝ
ltord.5 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
ltord.6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
Assertion
Ref Expression
eqord1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)

Proof of Theorem eqord1
StepHypRef Expression
1 ltord.1 . . . 4 (𝑥 = 𝑦𝐴 = 𝐵)
2 ltord.2 . . . 4 (𝑥 = 𝐶𝐴 = 𝑀)
3 ltord.3 . . . 4 (𝑥 = 𝐷𝐴 = 𝑁)
4 ltord.4 . . . 4 𝑆 ⊆ ℝ
5 ltord.5 . . . 4 ((𝜑𝑥𝑆) → 𝐴 ∈ ℝ)
6 ltord.6 . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 < 𝑦𝐴 < 𝐵))
71, 2, 3, 4, 5, 6leord1 11650 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶𝐷𝑀𝑁))
81, 3, 2, 4, 5, 6leord1 11650 . . . 4 ((𝜑 ∧ (𝐷𝑆𝐶𝑆)) → (𝐷𝐶𝑁𝑀))
98ancom2s 650 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐷𝐶𝑁𝑀))
107, 9anbi12d 632 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → ((𝐶𝐷𝐷𝐶) ↔ (𝑀𝑁𝑁𝑀)))
114sseli 3925 . . . 4 (𝐶𝑆𝐶 ∈ ℝ)
124sseli 3925 . . . 4 (𝐷𝑆𝐷 ∈ ℝ)
13 letri3 11204 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶)))
1411, 12, 13syl2an 596 . . 3 ((𝐶𝑆𝐷𝑆) → (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶)))
1514adantl 481 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷 ↔ (𝐶𝐷𝐷𝐶)))
165ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥𝑆 𝐴 ∈ ℝ)
172eleq1d 2816 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ∈ ℝ ↔ 𝑀 ∈ ℝ))
1817rspccva 3571 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐶𝑆) → 𝑀 ∈ ℝ)
1916, 18sylan 580 . . . 4 ((𝜑𝐶𝑆) → 𝑀 ∈ ℝ)
2019adantrr 717 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑀 ∈ ℝ)
213eleq1d 2816 . . . . . 6 (𝑥 = 𝐷 → (𝐴 ∈ ℝ ↔ 𝑁 ∈ ℝ))
2221rspccva 3571 . . . . 5 ((∀𝑥𝑆 𝐴 ∈ ℝ ∧ 𝐷𝑆) → 𝑁 ∈ ℝ)
2316, 22sylan 580 . . . 4 ((𝜑𝐷𝑆) → 𝑁 ∈ ℝ)
2423adantrl 716 . . 3 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → 𝑁 ∈ ℝ)
2520, 24letri3d 11261 . 2 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝑀 = 𝑁 ↔ (𝑀𝑁𝑁𝑀)))
2610, 15, 253bitr4d 311 1 ((𝜑 ∧ (𝐶𝑆𝐷𝑆)) → (𝐶 = 𝐷𝑀 = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897   class class class wbr 5093  cr 11011   < clt 11152  cle 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11069  ax-pre-lttri 11086  ax-pre-lttrn 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158
This theorem is referenced by:  eqord2  11654  expcan  14082  ovolicc2lem3  25453  rmyeq0  43051  rmyeq  43052
  Copyright terms: Public domain W3C validator