|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lenltd | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by Mario Carneiro, 27-May-2016.) | 
| Ref | Expression | 
|---|---|
| ltd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| ltd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| Ref | Expression | 
|---|---|
| lenltd | ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lenlt 11340 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | 
| Copyright terms: Public domain | W3C validator |