MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1card Structured version   Visualization version   GIF version

Theorem dif1card 9904
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dif1card ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))

Proof of Theorem dif1card
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 diffi 9089 . . 3 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
2 isfi 8901 . . . 4 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚)
3 simp3 1138 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚)
4 en2sn 8966 . . . . . . . . . . . 12 ((𝑋𝐴𝑚 ∈ ω) → {𝑋} ≈ {𝑚})
543adant3 1132 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚})
6 disjdifr 4424 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
76a1i 11 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
8 nnord 7807 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
9 ordirr 6325 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
108, 9syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
11 disjsn 4663 . . . . . . . . . . . . 13 ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚𝑚)
1210, 11sylibr 234 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
13123ad2ant2 1134 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅)
14 unen 8971 . . . . . . . . . . 11 ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
153, 5, 7, 13, 14syl22anc 838 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
16 difsnid 4761 . . . . . . . . . . . 12 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
17 df-suc 6313 . . . . . . . . . . . . . 14 suc 𝑚 = (𝑚 ∪ {𝑚})
1817eqcomi 2738 . . . . . . . . . . . . 13 (𝑚 ∪ {𝑚}) = suc 𝑚
1918a1i 11 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚)
2016, 19breq12d 5105 . . . . . . . . . . 11 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
21203ad2ant1 1133 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
2215, 21mpbid 232 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚)
23 peano2 7823 . . . . . . . . . 10 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
24233ad2ant2 1134 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω)
25 cardennn 9879 . . . . . . . . 9 ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚)
2622, 24, 25syl2anc 584 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚)
27 cardennn 9879 . . . . . . . . . . 11 (((𝐴 ∖ {𝑋}) ≈ 𝑚𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
2827ancoms 458 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
29283adant1 1130 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
30 suceq 6375 . . . . . . . . 9 ((card‘(𝐴 ∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3129, 30syl 17 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3226, 31eqtr4d 2767 . . . . . . 7 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
33323expib 1122 . . . . . 6 (𝑋𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3433com12 32 . . . . 5 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3534rexlimiva 3122 . . . 4 (∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
362, 35sylbi 217 . . 3 ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
371, 36syl 17 . 2 (𝐴 ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3837imp 406 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  cdif 3900  cun 3901  cin 3902  c0 4284  {csn 4577   class class class wbr 5092  Ord word 6306  suc csuc 6309  cfv 6482  ωcom 7799  cen 8869  Fincfn 8872  cardccrd 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835
This theorem is referenced by:  unidifsnel  32484  unidifsnne  32485
  Copyright terms: Public domain W3C validator