Step | Hyp | Ref
| Expression |
1 | | diffi 8979 |
. . 3
⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin) |
2 | | isfi 8719 |
. . . 4
⊢ ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚) |
3 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚) |
4 | | en2sn 8785 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω) → {𝑋} ≈ {𝑚}) |
5 | 4 | 3adant3 1130 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚}) |
6 | | disjdifr 4403 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ |
7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) |
8 | | nnord 7695 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ ω → Ord 𝑚) |
9 | | ordirr 6269 |
. . . . . . . . . . . . . 14
⊢ (Ord
𝑚 → ¬ 𝑚 ∈ 𝑚) |
10 | 8, 9 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ ω → ¬
𝑚 ∈ 𝑚) |
11 | | disjsn 4644 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚 ∈ 𝑚) |
12 | 10, 11 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅) |
13 | 12 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅) |
14 | | unen 8790 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚})) |
15 | 3, 5, 7, 13, 14 | syl22anc 835 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚})) |
16 | | difsnid 4740 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴) |
17 | | df-suc 6257 |
. . . . . . . . . . . . . 14
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) |
18 | 17 | eqcomi 2747 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∪ {𝑚}) = suc 𝑚 |
19 | 18 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚) |
20 | 16, 19 | breq12d 5083 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ 𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚)) |
21 | 20 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚)) |
22 | 15, 21 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚) |
23 | | peano2 7711 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ω → suc 𝑚 ∈
ω) |
24 | 23 | 3ad2ant2 1132 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω) |
25 | | cardennn 9672 |
. . . . . . . . 9
⊢ ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚) |
26 | 22, 24, 25 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚) |
27 | | cardennn 9672 |
. . . . . . . . . . 11
⊢ (((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ 𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
28 | 27 | ancoms 458 |
. . . . . . . . . 10
⊢ ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
29 | 28 | 3adant1 1128 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚) |
30 | | suceq 6316 |
. . . . . . . . 9
⊢
((card‘(𝐴
∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚) |
32 | 26, 31 | eqtr4d 2781 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐴 ∧ 𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) |
33 | 32 | 3expib 1120 |
. . . . . 6
⊢ (𝑋 ∈ 𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
34 | 33 | com12 32 |
. . . . 5
⊢ ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
35 | 34 | rexlimiva 3209 |
. . . 4
⊢
(∃𝑚 ∈
ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
36 | 2, 35 | sylbi 216 |
. . 3
⊢ ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
37 | 1, 36 | syl 17 |
. 2
⊢ (𝐴 ∈ Fin → (𝑋 ∈ 𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))) |
38 | 37 | imp 406 |
1
⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))) |