MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif1card Structured version   Visualization version   GIF version

Theorem dif1card 9421
Description: The cardinality of a nonempty finite set is one greater than the cardinality of the set with one element removed. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Feb-2013.)
Assertion
Ref Expression
dif1card ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))

Proof of Theorem dif1card
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 diffi 8734 . . 3 (𝐴 ∈ Fin → (𝐴 ∖ {𝑋}) ∈ Fin)
2 isfi 8516 . . . 4 ((𝐴 ∖ {𝑋}) ∈ Fin ↔ ∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚)
3 simp3 1135 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝐴 ∖ {𝑋}) ≈ 𝑚)
4 en2sn 8576 . . . . . . . . . . . 12 ((𝑋𝐴𝑚 ∈ ω) → {𝑋} ≈ {𝑚})
543adant3 1129 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → {𝑋} ≈ {𝑚})
6 incom 4128 . . . . . . . . . . . . 13 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ({𝑋} ∩ (𝐴 ∖ {𝑋}))
7 disjdif 4379 . . . . . . . . . . . . 13 ({𝑋} ∩ (𝐴 ∖ {𝑋})) = ∅
86, 7eqtri 2821 . . . . . . . . . . . 12 ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅
98a1i 11 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
10 nnord 7568 . . . . . . . . . . . . . 14 (𝑚 ∈ ω → Ord 𝑚)
11 ordirr 6177 . . . . . . . . . . . . . 14 (Ord 𝑚 → ¬ 𝑚𝑚)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑚 ∈ ω → ¬ 𝑚𝑚)
13 disjsn 4607 . . . . . . . . . . . . 13 ((𝑚 ∩ {𝑚}) = ∅ ↔ ¬ 𝑚𝑚)
1412, 13sylibr 237 . . . . . . . . . . . 12 (𝑚 ∈ ω → (𝑚 ∩ {𝑚}) = ∅)
15143ad2ant2 1131 . . . . . . . . . . 11 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑚 ∩ {𝑚}) = ∅)
16 unen 8579 . . . . . . . . . . 11 ((((𝐴 ∖ {𝑋}) ≈ 𝑚 ∧ {𝑋} ≈ {𝑚}) ∧ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ∧ (𝑚 ∩ {𝑚}) = ∅)) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
173, 5, 9, 15, 16syl22anc 837 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}))
18 difsnid 4703 . . . . . . . . . . . 12 (𝑋𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = 𝐴)
19 df-suc 6165 . . . . . . . . . . . . . 14 suc 𝑚 = (𝑚 ∪ {𝑚})
2019eqcomi 2807 . . . . . . . . . . . . 13 (𝑚 ∪ {𝑚}) = suc 𝑚
2120a1i 11 . . . . . . . . . . . 12 (𝑋𝐴 → (𝑚 ∪ {𝑚}) = suc 𝑚)
2218, 21breq12d 5043 . . . . . . . . . . 11 (𝑋𝐴 → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
23223ad2ant1 1130 . . . . . . . . . 10 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ≈ (𝑚 ∪ {𝑚}) ↔ 𝐴 ≈ suc 𝑚))
2417, 23mpbid 235 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → 𝐴 ≈ suc 𝑚)
25 peano2 7582 . . . . . . . . . 10 (𝑚 ∈ ω → suc 𝑚 ∈ ω)
26253ad2ant2 1131 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc 𝑚 ∈ ω)
27 cardennn 9396 . . . . . . . . 9 ((𝐴 ≈ suc 𝑚 ∧ suc 𝑚 ∈ ω) → (card‘𝐴) = suc 𝑚)
2824, 26, 27syl2anc 587 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc 𝑚)
29 cardennn 9396 . . . . . . . . . . 11 (((𝐴 ∖ {𝑋}) ≈ 𝑚𝑚 ∈ ω) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
3029ancoms 462 . . . . . . . . . 10 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
31303adant1 1127 . . . . . . . . 9 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘(𝐴 ∖ {𝑋})) = 𝑚)
32 suceq 6224 . . . . . . . . 9 ((card‘(𝐴 ∖ {𝑋})) = 𝑚 → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3331, 32syl 17 . . . . . . . 8 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → suc (card‘(𝐴 ∖ {𝑋})) = suc 𝑚)
3428, 33eqtr4d 2836 . . . . . . 7 ((𝑋𝐴𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
35343expib 1119 . . . . . 6 (𝑋𝐴 → ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3635com12 32 . . . . 5 ((𝑚 ∈ ω ∧ (𝐴 ∖ {𝑋}) ≈ 𝑚) → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
3736rexlimiva 3240 . . . 4 (∃𝑚 ∈ ω (𝐴 ∖ {𝑋}) ≈ 𝑚 → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
382, 37sylbi 220 . . 3 ((𝐴 ∖ {𝑋}) ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
391, 38syl 17 . 2 (𝐴 ∈ Fin → (𝑋𝐴 → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋}))))
4039imp 410 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴) → (card‘𝐴) = suc (card‘(𝐴 ∖ {𝑋})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cdif 3878  cun 3879  cin 3880  c0 4243  {csn 4525   class class class wbr 5030  Ord word 6158  suc csuc 6161  cfv 6324  ωcom 7560  cen 8489  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352
This theorem is referenced by:  unidifsnel  30307  unidifsnne  30308
  Copyright terms: Public domain W3C validator