![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2a | Structured version Visualization version GIF version |
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
lfldi.p | ⊢ + = (+g‘𝑅) |
lfldi.t | ⊢ · = (.r‘𝑅) |
lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsdi2a | ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6460 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfldi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
5 | lfldi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
6 | 3, 4, 5 | ofc12 7199 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)})) |
7 | 6 | oveq2d 6938 | . 2 ⊢ (𝜑 → (𝐺 ∘𝑓 · ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌}))) = (𝐺 ∘𝑓 · (𝑉 × {(𝑋 + 𝑌)}))) |
8 | lfldi.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lfldi.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
10 | lfldi.p | . . 3 ⊢ + = (+g‘𝑅) | |
11 | lfldi.t | . . 3 ⊢ · = (.r‘𝑅) | |
12 | lfldi.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
13 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | 1, 8, 9, 10, 11, 12, 13, 4, 5, 14 | lflvsdi2 35233 | . 2 ⊢ (𝜑 → (𝐺 ∘𝑓 · ((𝑉 × {𝑋}) ∘𝑓 + (𝑉 × {𝑌}))) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) |
16 | 7, 15 | eqtr3d 2816 | 1 ⊢ (𝜑 → (𝐺 ∘𝑓 · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘𝑓 · (𝑉 × {𝑋})) ∘𝑓 + (𝐺 ∘𝑓 · (𝑉 × {𝑌})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 Vcvv 3398 {csn 4398 × cxp 5353 ‘cfv 6135 (class class class)co 6922 ∘𝑓 cof 7172 Basecbs 16255 +gcplusg 16338 .rcmulr 16339 Scalarcsca 16341 LModclmod 19255 LFnlclfn 35211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-map 8142 df-ring 18936 df-lmod 19257 df-lfl 35212 |
This theorem is referenced by: ldualvsdi2 35298 |
Copyright terms: Public domain | W3C validator |