Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2a Structured version   Visualization version   GIF version

Theorem lflvsdi2a 36376
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi2.y (𝜑𝑌𝐾)
lfldi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsdi2a (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))

Proof of Theorem lflvsdi2a
StepHypRef Expression
1 lfldi.v . . . . . 6 𝑉 = (Base‘𝑊)
21fvexi 6659 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝜑𝑉 ∈ V)
4 lfldi.x . . . 4 (𝜑𝑋𝐾)
5 lfldi2.y . . . 4 (𝜑𝑌𝐾)
63, 4, 5ofc12 7414 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)}))
76oveq2d 7151 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺f · (𝑉 × {(𝑋 + 𝑌)})))
8 lfldi.r . . 3 𝑅 = (Scalar‘𝑊)
9 lfldi.k . . 3 𝐾 = (Base‘𝑅)
10 lfldi.p . . 3 + = (+g𝑅)
11 lfldi.t . . 3 · = (.r𝑅)
12 lfldi.f . . 3 𝐹 = (LFnl‘𝑊)
13 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
14 lfldi2.g . . 3 (𝜑𝐺𝐹)
151, 8, 9, 10, 11, 12, 13, 4, 5, 14lflvsdi2 36375 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
167, 15eqtr3d 2835 1 (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560  LModclmod 19627  LFnlclfn 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-map 8391  df-ring 19292  df-lmod 19629  df-lfl 36354
This theorem is referenced by:  ldualvsdi2  36440
  Copyright terms: Public domain W3C validator