Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2a | Structured version Visualization version GIF version |
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
lfldi.p | ⊢ + = (+g‘𝑅) |
lfldi.t | ⊢ · = (.r‘𝑅) |
lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsdi2a | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6843 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfldi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
5 | lfldi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
6 | 3, 4, 5 | ofc12 7627 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)})) |
7 | 6 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)}))) |
8 | lfldi.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lfldi.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
10 | lfldi.p | . . 3 ⊢ + = (+g‘𝑅) | |
11 | lfldi.t | . . 3 ⊢ · = (.r‘𝑅) | |
12 | lfldi.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
13 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | 1, 8, 9, 10, 11, 12, 13, 4, 5, 14 | lflvsdi2 37397 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
16 | 7, 15 | eqtr3d 2779 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3442 {csn 4577 × cxp 5622 ‘cfv 6483 (class class class)co 7341 ∘f cof 7597 Basecbs 17009 +gcplusg 17059 .rcmulr 17060 Scalarcsca 17062 LModclmod 20228 LFnlclfn 37375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7599 df-map 8692 df-ring 19879 df-lmod 20230 df-lfl 37376 |
This theorem is referenced by: ldualvsdi2 37462 |
Copyright terms: Public domain | W3C validator |