Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2a Structured version   Visualization version   GIF version

Theorem lflvsdi2a 39059
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi2.y (𝜑𝑌𝐾)
lfldi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsdi2a (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))

Proof of Theorem lflvsdi2a
StepHypRef Expression
1 lfldi.v . . . . . 6 𝑉 = (Base‘𝑊)
21fvexi 6836 . . . . 5 𝑉 ∈ V
32a1i 11 . . . 4 (𝜑𝑉 ∈ V)
4 lfldi.x . . . 4 (𝜑𝑋𝐾)
5 lfldi2.y . . . 4 (𝜑𝑌𝐾)
63, 4, 5ofc12 7643 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)}))
76oveq2d 7365 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺f · (𝑉 × {(𝑋 + 𝑌)})))
8 lfldi.r . . 3 𝑅 = (Scalar‘𝑊)
9 lfldi.k . . 3 𝐾 = (Base‘𝑅)
10 lfldi.p . . 3 + = (+g𝑅)
11 lfldi.t . . 3 · = (.r𝑅)
12 lfldi.f . . 3 𝐹 = (LFnl‘𝑊)
13 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
14 lfldi2.g . . 3 (𝜑𝐺𝐹)
151, 8, 9, 10, 11, 12, 13, 4, 5, 14lflvsdi2 39058 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
167, 15eqtr3d 2766 1 (𝜑 → (𝐺f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577   × cxp 5617  cfv 6482  (class class class)co 7349  f cof 7611  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164  LModclmod 20763  LFnlclfn 39036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-map 8755  df-ring 20120  df-lmod 20765  df-lfl 39037
This theorem is referenced by:  ldualvsdi2  39123
  Copyright terms: Public domain W3C validator