| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2a | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
| lfldi.p | ⊢ + = (+g‘𝑅) |
| lfldi.t | ⊢ · = (.r‘𝑅) |
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsdi2a | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfldi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6831 | . . . . 5 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfldi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 5 | lfldi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 6 | 3, 4, 5 | ofc12 7635 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)})) |
| 7 | 6 | oveq2d 7357 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)}))) |
| 8 | lfldi.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lfldi.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | lfldi.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 11 | lfldi.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 12 | lfldi.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 13 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 14 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 15 | 1, 8, 9, 10, 11, 12, 13, 4, 5, 14 | lflvsdi2 39118 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| 16 | 7, 15 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 × cxp 5609 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Scalarcsca 17159 LModclmod 20788 LFnlclfn 39096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-map 8747 df-ring 20148 df-lmod 20790 df-lfl 39097 |
| This theorem is referenced by: ldualvsdi2 39183 |
| Copyright terms: Public domain | W3C validator |