| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2a | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
| lfldi.p | ⊢ + = (+g‘𝑅) |
| lfldi.t | ⊢ · = (.r‘𝑅) |
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsdi2a | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfldi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6872 | . . . . 5 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfldi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 5 | lfldi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 6 | 3, 4, 5 | ofc12 7683 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)})) |
| 7 | 6 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)}))) |
| 8 | lfldi.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 9 | lfldi.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 10 | lfldi.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 11 | lfldi.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 12 | lfldi.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 13 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 14 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 15 | 1, 8, 9, 10, 11, 12, 13, 4, 5, 14 | lflvsdi2 39072 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| 16 | 7, 15 | eqtr3d 2766 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Scalarcsca 17223 LModclmod 20766 LFnlclfn 39050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-map 8801 df-ring 20144 df-lmod 20768 df-lfl 39051 |
| This theorem is referenced by: ldualvsdi2 39137 |
| Copyright terms: Public domain | W3C validator |