Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2a | Structured version Visualization version GIF version |
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfldi.v | ⊢ 𝑉 = (Base‘𝑊) |
lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfldi.k | ⊢ 𝐾 = (Base‘𝑅) |
lfldi.p | ⊢ + = (+g‘𝑅) |
lfldi.t | ⊢ · = (.r‘𝑅) |
lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsdi2a | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfldi.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6770 | . . . . 5 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfldi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
5 | lfldi2.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
6 | 3, 4, 5 | ofc12 7539 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌})) = (𝑉 × {(𝑋 + 𝑌)})) |
7 | 6 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)}))) |
8 | lfldi.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑊) | |
9 | lfldi.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
10 | lfldi.p | . . 3 ⊢ + = (+g‘𝑅) | |
11 | lfldi.t | . . 3 ⊢ · = (.r‘𝑅) | |
12 | lfldi.f | . . 3 ⊢ 𝐹 = (LFnl‘𝑊) | |
13 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
14 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
15 | 1, 8, 9, 10, 11, 12, 13, 4, 5, 14 | lflvsdi2 37020 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
16 | 7, 15 | eqtr3d 2780 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 + 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Scalarcsca 16891 LModclmod 20038 LFnlclfn 36998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-map 8575 df-ring 19700 df-lmod 20040 df-lfl 36999 |
This theorem is referenced by: ldualvsdi2 37085 |
Copyright terms: Public domain | W3C validator |