![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version |
Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lflass.v | ⊢ 𝑉 = (Base‘𝑊) |
lflass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lflass.k | ⊢ 𝐾 = (Base‘𝑅) |
lflass.t | ⊢ · = (.r‘𝑅) |
lflass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lflass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lflass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
lflass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
lflass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lflvsass | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflass.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6928 | . . . 4 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lflass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lflass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lflass.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | lflass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
8 | lflass.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 39059 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
11 | lflass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
12 | fconst6g 6805 | . . . 4 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
14 | lflass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
15 | fconst6g 6805 | . . . 4 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
17 | 6 | lmodring 20892 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
18 | 4, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
19 | lflass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
20 | 7, 19 | ringass 20280 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
21 | 18, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
22 | 3, 10, 13, 16, 21 | caofass 7743 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})))) |
23 | 3, 11, 14 | ofc12 7734 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)})) |
24 | 23 | oveq2d 7454 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)}))) |
25 | 22, 24 | eqtr2d 2778 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 × cxp 5691 ⟶wf 6565 ‘cfv 6569 (class class class)co 7438 ∘f cof 7702 Basecbs 17254 .rcmulr 17308 Scalarcsca 17310 Ringcrg 20260 LModclmod 20884 LFnlclfn 39053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-plusg 17320 df-sgrp 18754 df-mnd 18770 df-mgp 20162 df-ring 20262 df-lmod 20886 df-lfl 39054 |
This theorem is referenced by: ldualvsass 39137 |
Copyright terms: Public domain | W3C validator |