Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsass Structured version   Visualization version   GIF version

Theorem lflvsass 39077
Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lflass.v 𝑉 = (Base‘𝑊)
lflass.r 𝑅 = (Scalar‘𝑊)
lflass.k 𝐾 = (Base‘𝑅)
lflass.t · = (.r𝑅)
lflass.f 𝐹 = (LFnl‘𝑊)
lflass.w (𝜑𝑊 ∈ LMod)
lflass.x (𝜑𝑋𝐾)
lflass.y (𝜑𝑌𝐾)
lflass.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsass (𝜑 → (𝐺f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})))

Proof of Theorem lflvsass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflass.v . . . . 5 𝑉 = (Base‘𝑊)
21fvexi 6928 . . . 4 𝑉 ∈ V
32a1i 11 . . 3 (𝜑𝑉 ∈ V)
4 lflass.w . . . 4 (𝜑𝑊 ∈ LMod)
5 lflass.g . . . 4 (𝜑𝐺𝐹)
6 lflass.r . . . . 5 𝑅 = (Scalar‘𝑊)
7 lflass.k . . . . 5 𝐾 = (Base‘𝑅)
8 lflass.f . . . . 5 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39059 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 584 . . 3 (𝜑𝐺:𝑉𝐾)
11 lflass.x . . . 4 (𝜑𝑋𝐾)
12 fconst6g 6805 . . . 4 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
1311, 12syl 17 . . 3 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
14 lflass.y . . . 4 (𝜑𝑌𝐾)
15 fconst6g 6805 . . . 4 (𝑌𝐾 → (𝑉 × {𝑌}):𝑉𝐾)
1614, 15syl 17 . . 3 (𝜑 → (𝑉 × {𝑌}):𝑉𝐾)
176lmodring 20892 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
184, 17syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
19 lflass.t . . . . 5 · = (.r𝑅)
207, 19ringass 20280 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2118, 20sylan 580 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
223, 10, 13, 16, 21caofass 7743 . 2 (𝜑 → ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))))
233, 11, 14ofc12 7734 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)}))
2423oveq2d 7454 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺f · (𝑉 × {(𝑋 · 𝑌)})))
2522, 24eqtr2d 2778 1 (𝜑 → (𝐺f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1539  wcel 2108  Vcvv 3481  {csn 4634   × cxp 5691  wf 6565  cfv 6569  (class class class)co 7438  f cof 7702  Basecbs 17254  .rcmulr 17308  Scalarcsca 17310  Ringcrg 20260  LModclmod 20884  LFnlclfn 39053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-of 7704  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-sets 17207  df-slot 17225  df-ndx 17237  df-base 17255  df-plusg 17320  df-sgrp 18754  df-mnd 18770  df-mgp 20162  df-ring 20262  df-lmod 20886  df-lfl 39054
This theorem is referenced by:  ldualvsass  39137
  Copyright terms: Public domain W3C validator