| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflass.k | ⊢ 𝐾 = (Base‘𝑅) |
| lflass.t | ⊢ · = (.r‘𝑅) |
| lflass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lflass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lflass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsass | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflass.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6845 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflass.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | lflass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | lflass.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39235 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 11 | lflass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 12 | fconst6g 6720 | . . . 4 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 14 | lflass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 15 | fconst6g 6720 | . . . 4 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
| 17 | 6 | lmodring 20810 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 4, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lflass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 20 | 7, 19 | ringass 20179 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 21 | 18, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | 3, 10, 13, 16, 21 | caofass 7659 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})))) |
| 23 | 3, 11, 14 | ofc12 7649 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)})) |
| 24 | 23 | oveq2d 7371 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)}))) |
| 25 | 22, 24 | eqtr2d 2769 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 × cxp 5619 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 Basecbs 17127 .rcmulr 17169 Scalarcsca 17171 Ringcrg 20159 LModclmod 20802 LFnlclfn 39229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-sgrp 18635 df-mnd 18651 df-mgp 20067 df-ring 20161 df-lmod 20804 df-lfl 39230 |
| This theorem is referenced by: ldualvsass 39313 |
| Copyright terms: Public domain | W3C validator |