| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflass.k | ⊢ 𝐾 = (Base‘𝑅) |
| lflass.t | ⊢ · = (.r‘𝑅) |
| lflass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lflass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lflass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsass | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflass.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6872 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflass.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | lflass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | lflass.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39056 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 11 | lflass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 12 | fconst6g 6749 | . . . 4 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 14 | lflass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 15 | fconst6g 6749 | . . . 4 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
| 17 | 6 | lmodring 20774 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 4, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lflass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 20 | 7, 19 | ringass 20162 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 21 | 18, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | 3, 10, 13, 16, 21 | caofass 7693 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})))) |
| 23 | 3, 11, 14 | ofc12 7683 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)})) |
| 24 | 23 | oveq2d 7403 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)}))) |
| 25 | 22, 24 | eqtr2d 2765 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 Ringcrg 20142 LModclmod 20766 LFnlclfn 39050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ring 20144 df-lmod 20768 df-lfl 39051 |
| This theorem is referenced by: ldualvsass 39134 |
| Copyright terms: Public domain | W3C validator |