Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsass Structured version   Visualization version   GIF version

Theorem lflvsass 38680
Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lflass.v 𝑉 = (Base‘𝑊)
lflass.r 𝑅 = (Scalar‘𝑊)
lflass.k 𝐾 = (Base‘𝑅)
lflass.t · = (.r𝑅)
lflass.f 𝐹 = (LFnl‘𝑊)
lflass.w (𝜑𝑊 ∈ LMod)
lflass.x (𝜑𝑋𝐾)
lflass.y (𝜑𝑌𝐾)
lflass.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsass (𝜑 → (𝐺f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})))

Proof of Theorem lflvsass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflass.v . . . . 5 𝑉 = (Base‘𝑊)
21fvexi 6910 . . . 4 𝑉 ∈ V
32a1i 11 . . 3 (𝜑𝑉 ∈ V)
4 lflass.w . . . 4 (𝜑𝑊 ∈ LMod)
5 lflass.g . . . 4 (𝜑𝐺𝐹)
6 lflass.r . . . . 5 𝑅 = (Scalar‘𝑊)
7 lflass.k . . . . 5 𝐾 = (Base‘𝑅)
8 lflass.f . . . . 5 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 38662 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 582 . . 3 (𝜑𝐺:𝑉𝐾)
11 lflass.x . . . 4 (𝜑𝑋𝐾)
12 fconst6g 6786 . . . 4 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
1311, 12syl 17 . . 3 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
14 lflass.y . . . 4 (𝜑𝑌𝐾)
15 fconst6g 6786 . . . 4 (𝑌𝐾 → (𝑉 × {𝑌}):𝑉𝐾)
1614, 15syl 17 . . 3 (𝜑 → (𝑉 × {𝑌}):𝑉𝐾)
176lmodring 20763 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
184, 17syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
19 lflass.t . . . . 5 · = (.r𝑅)
207, 19ringass 20205 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2118, 20sylan 578 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
223, 10, 13, 16, 21caofass 7723 . 2 (𝜑 → ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))))
233, 11, 14ofc12 7714 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)}))
2423oveq2d 7435 . 2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺f · (𝑉 × {(𝑋 · 𝑌)})))
2522, 24eqtr2d 2766 1 (𝜑 → (𝐺f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  {csn 4630   × cxp 5676  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  Basecbs 17183  .rcmulr 17237  Scalarcsca 17239  Ringcrg 20185  LModclmod 20755  LFnlclfn 38656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-plusg 17249  df-sgrp 18682  df-mnd 18698  df-mgp 20087  df-ring 20187  df-lmod 20757  df-lfl 38657
This theorem is referenced by:  ldualvsass  38740
  Copyright terms: Public domain W3C validator