Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsass Structured version   Visualization version   GIF version

Theorem lflvsass 34888
Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lflass.v 𝑉 = (Base‘𝑊)
lflass.r 𝑅 = (Scalar‘𝑊)
lflass.k 𝐾 = (Base‘𝑅)
lflass.t · = (.r𝑅)
lflass.f 𝐹 = (LFnl‘𝑊)
lflass.w (𝜑𝑊 ∈ LMod)
lflass.x (𝜑𝑋𝐾)
lflass.y (𝜑𝑌𝐾)
lflass.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsass (𝜑 → (𝐺𝑓 · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺𝑓 · (𝑉 × {𝑋})) ∘𝑓 · (𝑉 × {𝑌})))

Proof of Theorem lflvsass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflass.v . . . . 5 𝑉 = (Base‘𝑊)
21fvexi 6345 . . . 4 𝑉 ∈ V
32a1i 11 . . 3 (𝜑𝑉 ∈ V)
4 lflass.w . . . 4 (𝜑𝑊 ∈ LMod)
5 lflass.g . . . 4 (𝜑𝐺𝐹)
6 lflass.r . . . . 5 𝑅 = (Scalar‘𝑊)
7 lflass.k . . . . 5 𝐾 = (Base‘𝑅)
8 lflass.f . . . . 5 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 34870 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 573 . . 3 (𝜑𝐺:𝑉𝐾)
11 lflass.x . . . 4 (𝜑𝑋𝐾)
12 fconst6g 6235 . . . 4 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
1311, 12syl 17 . . 3 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
14 lflass.y . . . 4 (𝜑𝑌𝐾)
15 fconst6g 6235 . . . 4 (𝑌𝐾 → (𝑉 × {𝑌}):𝑉𝐾)
1614, 15syl 17 . . 3 (𝜑 → (𝑉 × {𝑌}):𝑉𝐾)
176lmodring 19081 . . . . 5 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
184, 17syl 17 . . . 4 (𝜑𝑅 ∈ Ring)
19 lflass.t . . . . 5 · = (.r𝑅)
207, 19ringass 18772 . . . 4 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
2118, 20sylan 569 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))
223, 10, 13, 16, 21caofass 7082 . 2 (𝜑 → ((𝐺𝑓 · (𝑉 × {𝑋})) ∘𝑓 · (𝑉 × {𝑌})) = (𝐺𝑓 · ((𝑉 × {𝑋}) ∘𝑓 · (𝑉 × {𝑌}))))
233, 11, 14ofc12 7073 . . 3 (𝜑 → ((𝑉 × {𝑋}) ∘𝑓 · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)}))
2423oveq2d 6812 . 2 (𝜑 → (𝐺𝑓 · ((𝑉 × {𝑋}) ∘𝑓 · (𝑉 × {𝑌}))) = (𝐺𝑓 · (𝑉 × {(𝑋 · 𝑌)})))
2522, 24eqtr2d 2806 1 (𝜑 → (𝐺𝑓 · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺𝑓 · (𝑉 × {𝑋})) ∘𝑓 · (𝑉 × {𝑌})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1631  wcel 2145  Vcvv 3351  {csn 4317   × cxp 5248  wf 6026  cfv 6030  (class class class)co 6796  𝑓 cof 7046  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152  Ringcrg 18755  LModclmod 19073  LFnlclfn 34864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-sgrp 17492  df-mnd 17503  df-mgp 18698  df-ring 18757  df-lmod 19075  df-lfl 34865
This theorem is referenced by:  ldualvsass  34948
  Copyright terms: Public domain W3C validator