| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflass.k | ⊢ 𝐾 = (Base‘𝑅) |
| lflass.t | ⊢ · = (.r‘𝑅) |
| lflass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lflass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lflass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsass | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflass.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6899 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflass.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | lflass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | lflass.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 38998 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 11 | lflass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 12 | fconst6g 6776 | . . . 4 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 14 | lflass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 15 | fconst6g 6776 | . . . 4 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
| 17 | 6 | lmodring 20833 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 4, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lflass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 20 | 7, 19 | ringass 20217 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 21 | 18, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | 3, 10, 13, 16, 21 | caofass 7718 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})))) |
| 23 | 3, 11, 14 | ofc12 7708 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)})) |
| 24 | 23 | oveq2d 7428 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)}))) |
| 25 | 22, 24 | eqtr2d 2770 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 × cxp 5663 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ∘f cof 7676 Basecbs 17228 .rcmulr 17273 Scalarcsca 17275 Ringcrg 20197 LModclmod 20825 LFnlclfn 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-sgrp 18700 df-mnd 18716 df-mgp 20105 df-ring 20199 df-lmod 20827 df-lfl 38993 |
| This theorem is referenced by: ldualvsass 39076 |
| Copyright terms: Public domain | W3C validator |