| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
| Ref | Expression |
|---|---|
| lflass.v | ⊢ 𝑉 = (Base‘𝑊) |
| lflass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lflass.k | ⊢ 𝐾 = (Base‘𝑅) |
| lflass.t | ⊢ · = (.r‘𝑅) |
| lflass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lflass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lflass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| lflass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| lflass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lflvsass | ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lflass.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6879 | . . . 4 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lflass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lflass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lflass.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | lflass.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | lflass.f | . . . . 5 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39048 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) |
| 10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
| 11 | lflass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 12 | fconst6g 6756 | . . . 4 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) |
| 14 | lflass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 15 | fconst6g 6756 | . . . 4 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) |
| 17 | 6 | lmodring 20780 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 18 | 4, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 19 | lflass.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 20 | 7, 19 | ringass 20168 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 21 | 18, 20 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 22 | 3, 10, 13, 16, 21 | caofass 7700 | . 2 ⊢ (𝜑 → ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌})) = (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})))) |
| 23 | 3, 11, 14 | ofc12 7690 | . . 3 ⊢ (𝜑 → ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌})) = (𝑉 × {(𝑋 · 𝑌)})) |
| 24 | 23 | oveq2d 7410 | . 2 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f · (𝑉 × {𝑌}))) = (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)}))) |
| 25 | 22, 24 | eqtr2d 2766 | 1 ⊢ (𝜑 → (𝐺 ∘f · (𝑉 × {(𝑋 · 𝑌)})) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f · (𝑉 × {𝑌}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3455 {csn 4597 × cxp 5644 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ∘f cof 7658 Basecbs 17185 .rcmulr 17227 Scalarcsca 17229 Ringcrg 20148 LModclmod 20772 LFnlclfn 39042 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-sgrp 18652 df-mnd 18668 df-mgp 20056 df-ring 20150 df-lmod 20774 df-lfl 39043 |
| This theorem is referenced by: ldualvsass 39126 |
| Copyright terms: Public domain | W3C validator |