![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsass | Structured version Visualization version GIF version |
Description: Associative law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
lflass.v | β’ π = (Baseβπ) |
lflass.r | β’ π = (Scalarβπ) |
lflass.k | β’ πΎ = (Baseβπ ) |
lflass.t | β’ Β· = (.rβπ ) |
lflass.f | β’ πΉ = (LFnlβπ) |
lflass.w | β’ (π β π β LMod) |
lflass.x | β’ (π β π β πΎ) |
lflass.y | β’ (π β π β πΎ) |
lflass.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
lflvsass | β’ (π β (πΊ βf Β· (π Γ {(π Β· π)})) = ((πΊ βf Β· (π Γ {π})) βf Β· (π Γ {π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lflass.v | . . . . 5 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6860 | . . . 4 β’ π β V |
3 | 2 | a1i 11 | . . 3 β’ (π β π β V) |
4 | lflass.w | . . . 4 β’ (π β π β LMod) | |
5 | lflass.g | . . . 4 β’ (π β πΊ β πΉ) | |
6 | lflass.r | . . . . 5 β’ π = (Scalarβπ) | |
7 | lflass.k | . . . . 5 β’ πΎ = (Baseβπ ) | |
8 | lflass.f | . . . . 5 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 37575 | . . . 4 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆπΎ) |
10 | 4, 5, 9 | syl2anc 585 | . . 3 β’ (π β πΊ:πβΆπΎ) |
11 | lflass.x | . . . 4 β’ (π β π β πΎ) | |
12 | fconst6g 6735 | . . . 4 β’ (π β πΎ β (π Γ {π}):πβΆπΎ) | |
13 | 11, 12 | syl 17 | . . 3 β’ (π β (π Γ {π}):πβΆπΎ) |
14 | lflass.y | . . . 4 β’ (π β π β πΎ) | |
15 | fconst6g 6735 | . . . 4 β’ (π β πΎ β (π Γ {π}):πβΆπΎ) | |
16 | 14, 15 | syl 17 | . . 3 β’ (π β (π Γ {π}):πβΆπΎ) |
17 | 6 | lmodring 20373 | . . . . 5 β’ (π β LMod β π β Ring) |
18 | 4, 17 | syl 17 | . . . 4 β’ (π β π β Ring) |
19 | lflass.t | . . . . 5 β’ Β· = (.rβπ ) | |
20 | 7, 19 | ringass 19992 | . . . 4 β’ ((π β Ring β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΎ)) β ((π₯ Β· π¦) Β· π§) = (π₯ Β· (π¦ Β· π§))) |
21 | 18, 20 | sylan 581 | . . 3 β’ ((π β§ (π₯ β πΎ β§ π¦ β πΎ β§ π§ β πΎ)) β ((π₯ Β· π¦) Β· π§) = (π₯ Β· (π¦ Β· π§))) |
22 | 3, 10, 13, 16, 21 | caofass 7658 | . 2 β’ (π β ((πΊ βf Β· (π Γ {π})) βf Β· (π Γ {π})) = (πΊ βf Β· ((π Γ {π}) βf Β· (π Γ {π})))) |
23 | 3, 11, 14 | ofc12 7649 | . . 3 β’ (π β ((π Γ {π}) βf Β· (π Γ {π})) = (π Γ {(π Β· π)})) |
24 | 23 | oveq2d 7377 | . 2 β’ (π β (πΊ βf Β· ((π Γ {π}) βf Β· (π Γ {π}))) = (πΊ βf Β· (π Γ {(π Β· π)}))) |
25 | 22, 24 | eqtr2d 2774 | 1 β’ (π β (πΊ βf Β· (π Γ {(π Β· π)})) = ((πΊ βf Β· (π Γ {π})) βf Β· (π Γ {π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1088 = wceq 1542 β wcel 2107 Vcvv 3447 {csn 4590 Γ cxp 5635 βΆwf 6496 βcfv 6500 (class class class)co 7361 βf cof 7619 Basecbs 17091 .rcmulr 17142 Scalarcsca 17144 Ringcrg 19972 LModclmod 20365 LFnlclfn 37569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-plusg 17154 df-sgrp 18554 df-mnd 18565 df-mgp 19905 df-ring 19974 df-lmod 20367 df-lfl 37570 |
This theorem is referenced by: ldualvsass 37653 |
Copyright terms: Public domain | W3C validator |