MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankeq0b Structured version   Visualization version   GIF version

Theorem rankeq0b 9929
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankeq0b (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))

Proof of Theorem rankeq0b
StepHypRef Expression
1 fveq2 6920 . . 3 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
2 r1funlim 9835 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . 6 Lim dom 𝑅1
4 limomss 7908 . . . . . 6 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
53, 4ax-mp 5 . . . . 5 ω ⊆ dom 𝑅1
6 peano1 7927 . . . . 5 ∅ ∈ ω
75, 6sselii 4005 . . . 4 ∅ ∈ dom 𝑅1
8 rankonid 9898 . . . 4 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
97, 8mpbi 230 . . 3 (rank‘∅) = ∅
101, 9eqtrdi 2796 . 2 (𝐴 = ∅ → (rank‘𝐴) = ∅)
11 eqimss 4067 . . . . . . 7 ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅)
1211adantl 481 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅)
13 simpl 482 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 (𝑅1 “ On))
14 rankr1bg 9872 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1513, 7, 14sylancl 585 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1612, 15mpbird 257 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅))
17 r10 9837 . . . . 5 (𝑅1‘∅) = ∅
1816, 17sseqtrdi 4059 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅)
19 ss0 4425 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
2018, 19syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅)
2120ex 412 . 2 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅))
2210, 21impbid2 226 1 (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  c0 4352   cuni 4931  dom cdm 5700  cima 5703  Oncon0 6395  Lim wlim 6396  Fun wfun 6567  cfv 6573  ωcom 7903  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833  df-rank 9834
This theorem is referenced by:  rankeq0  9930
  Copyright terms: Public domain W3C validator