| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankeq0b | Structured version Visualization version GIF version | ||
| Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankeq0b | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6858 | . . 3 ⊢ (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅)) | |
| 2 | r1funlim 9719 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 3 | 2 | simpri 485 | . . . . . 6 ⊢ Lim dom 𝑅1 |
| 4 | limomss 7847 | . . . . . 6 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ω ⊆ dom 𝑅1 |
| 6 | peano1 7865 | . . . . 5 ⊢ ∅ ∈ ω | |
| 7 | 5, 6 | sselii 3943 | . . . 4 ⊢ ∅ ∈ dom 𝑅1 |
| 8 | rankonid 9782 | . . . 4 ⊢ (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (rank‘∅) = ∅ |
| 10 | 1, 9 | eqtrdi 2780 | . 2 ⊢ (𝐴 = ∅ → (rank‘𝐴) = ∅) |
| 11 | eqimss 4005 | . . . . . . 7 ⊢ ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅) |
| 13 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 14 | rankr1bg 9756 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) | |
| 15 | 13, 7, 14 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) |
| 16 | 12, 15 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅)) |
| 17 | r10 9721 | . . . . 5 ⊢ (𝑅1‘∅) = ∅ | |
| 18 | 16, 17 | sseqtrdi 3987 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅) |
| 19 | ss0 4365 | . . . 4 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅)) |
| 22 | 10, 21 | impbid2 226 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 dom cdm 5638 “ cima 5641 Oncon0 6332 Lim wlim 6333 Fun wfun 6505 ‘cfv 6511 ωcom 7842 𝑅1cr1 9715 rankcrnk 9716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-r1 9717 df-rank 9718 |
| This theorem is referenced by: rankeq0 9814 |
| Copyright terms: Public domain | W3C validator |