MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankeq0b Structured version   Visualization version   GIF version

Theorem rankeq0b 9278
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankeq0b (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))

Proof of Theorem rankeq0b
StepHypRef Expression
1 fveq2 6664 . . 3 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
2 r1funlim 9184 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 486 . . . . . 6 Lim dom 𝑅1
4 limomss 7573 . . . . . 6 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
53, 4ax-mp 5 . . . . 5 ω ⊆ dom 𝑅1
6 peano1 7589 . . . . 5 ∅ ∈ ω
75, 6sselii 3963 . . . 4 ∅ ∈ dom 𝑅1
8 rankonid 9247 . . . 4 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
97, 8mpbi 231 . . 3 (rank‘∅) = ∅
101, 9syl6eq 2872 . 2 (𝐴 = ∅ → (rank‘𝐴) = ∅)
11 eqimss 4022 . . . . . . 7 ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅)
1211adantl 482 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅)
13 simpl 483 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 (𝑅1 “ On))
14 rankr1bg 9221 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1513, 7, 14sylancl 586 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1612, 15mpbird 258 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅))
17 r10 9186 . . . . 5 (𝑅1‘∅) = ∅
1816, 17sseqtrdi 4016 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅)
19 ss0 4351 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
2018, 19syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅)
2120ex 413 . 2 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅))
2210, 21impbid2 227 1 (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3935  c0 4290   cuni 4832  dom cdm 5549  cima 5552  Oncon0 6185  Lim wlim 6186  Fun wfun 6343  cfv 6349  ωcom 7568  𝑅1cr1 9180  rankcrnk 9181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-r1 9182  df-rank 9183
This theorem is referenced by:  rankeq0  9279
  Copyright terms: Public domain W3C validator