![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankeq0b | Structured version Visualization version GIF version |
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankeq0b | β’ (π΄ β βͺ (π 1 β On) β (π΄ = β β (rankβπ΄) = β )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . 3 β’ (π΄ = β β (rankβπ΄) = (rankββ )) | |
2 | r1funlim 9756 | . . . . . . 7 β’ (Fun π 1 β§ Lim dom π 1) | |
3 | 2 | simpri 485 | . . . . . 6 β’ Lim dom π 1 |
4 | limomss 7853 | . . . . . 6 β’ (Lim dom π 1 β Ο β dom π 1) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 β’ Ο β dom π 1 |
6 | peano1 7872 | . . . . 5 β’ β β Ο | |
7 | 5, 6 | sselii 3971 | . . . 4 β’ β β dom π 1 |
8 | rankonid 9819 | . . . 4 β’ (β β dom π 1 β (rankββ ) = β ) | |
9 | 7, 8 | mpbi 229 | . . 3 β’ (rankββ ) = β |
10 | 1, 9 | eqtrdi 2780 | . 2 β’ (π΄ = β β (rankβπ΄) = β ) |
11 | eqimss 4032 | . . . . . . 7 β’ ((rankβπ΄) = β β (rankβπ΄) β β ) | |
12 | 11 | adantl 481 | . . . . . 6 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β (rankβπ΄) β β ) |
13 | simpl 482 | . . . . . . 7 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β π΄ β βͺ (π 1 β On)) | |
14 | rankr1bg 9793 | . . . . . . 7 β’ ((π΄ β βͺ (π 1 β On) β§ β β dom π 1) β (π΄ β (π 1ββ ) β (rankβπ΄) β β )) | |
15 | 13, 7, 14 | sylancl 585 | . . . . . 6 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β (π΄ β (π 1ββ ) β (rankβπ΄) β β )) |
16 | 12, 15 | mpbird 257 | . . . . 5 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β π΄ β (π 1ββ )) |
17 | r10 9758 | . . . . 5 β’ (π 1ββ ) = β | |
18 | 16, 17 | sseqtrdi 4024 | . . . 4 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β π΄ β β ) |
19 | ss0 4390 | . . . 4 β’ (π΄ β β β π΄ = β ) | |
20 | 18, 19 | syl 17 | . . 3 β’ ((π΄ β βͺ (π 1 β On) β§ (rankβπ΄) = β ) β π΄ = β ) |
21 | 20 | ex 412 | . 2 β’ (π΄ β βͺ (π 1 β On) β ((rankβπ΄) = β β π΄ = β )) |
22 | 10, 21 | impbid2 225 | 1 β’ (π΄ β βͺ (π 1 β On) β (π΄ = β β (rankβπ΄) = β )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 β wss 3940 β c0 4314 βͺ cuni 4899 dom cdm 5666 β cima 5669 Oncon0 6354 Lim wlim 6355 Fun wfun 6527 βcfv 6533 Οcom 7848 π 1cr1 9752 rankcrnk 9753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-r1 9754 df-rank 9755 |
This theorem is referenced by: rankeq0 9851 |
Copyright terms: Public domain | W3C validator |