![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankeq0b | Structured version Visualization version GIF version |
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankeq0b | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6411 | . . 3 ⊢ (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅)) | |
2 | r1funlim 8879 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
3 | 2 | simpri 480 | . . . . . 6 ⊢ Lim dom 𝑅1 |
4 | limomss 7304 | . . . . . 6 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ω ⊆ dom 𝑅1 |
6 | peano1 7319 | . . . . 5 ⊢ ∅ ∈ ω | |
7 | 5, 6 | sselii 3795 | . . . 4 ⊢ ∅ ∈ dom 𝑅1 |
8 | rankonid 8942 | . . . 4 ⊢ (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅) | |
9 | 7, 8 | mpbi 222 | . . 3 ⊢ (rank‘∅) = ∅ |
10 | 1, 9 | syl6eq 2849 | . 2 ⊢ (𝐴 = ∅ → (rank‘𝐴) = ∅) |
11 | eqimss 3853 | . . . . . . 7 ⊢ ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅) | |
12 | 11 | adantl 474 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅) |
13 | simpl 475 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
14 | rankr1bg 8916 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) | |
15 | 13, 7, 14 | sylancl 581 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) |
16 | 12, 15 | mpbird 249 | . . . . 5 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅)) |
17 | r10 8881 | . . . . 5 ⊢ (𝑅1‘∅) = ∅ | |
18 | 16, 17 | syl6sseq 3847 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅) |
19 | ss0 4170 | . . . 4 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅) |
21 | 20 | ex 402 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅)) |
22 | 10, 21 | impbid2 218 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 ∅c0 4115 ∪ cuni 4628 dom cdm 5312 “ cima 5315 Oncon0 5941 Lim wlim 5942 Fun wfun 6095 ‘cfv 6101 ωcom 7299 𝑅1cr1 8875 rankcrnk 8876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-r1 8877 df-rank 8878 |
This theorem is referenced by: rankeq0 8974 |
Copyright terms: Public domain | W3C validator |