| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankeq0b | Structured version Visualization version GIF version | ||
| Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankeq0b | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6876 | . . 3 ⊢ (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅)) | |
| 2 | r1funlim 9780 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 3 | 2 | simpri 485 | . . . . . 6 ⊢ Lim dom 𝑅1 |
| 4 | limomss 7866 | . . . . . 6 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ω ⊆ dom 𝑅1 |
| 6 | peano1 7884 | . . . . 5 ⊢ ∅ ∈ ω | |
| 7 | 5, 6 | sselii 3955 | . . . 4 ⊢ ∅ ∈ dom 𝑅1 |
| 8 | rankonid 9843 | . . . 4 ⊢ (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (rank‘∅) = ∅ |
| 10 | 1, 9 | eqtrdi 2786 | . 2 ⊢ (𝐴 = ∅ → (rank‘𝐴) = ∅) |
| 11 | eqimss 4017 | . . . . . . 7 ⊢ ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅) |
| 13 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 14 | rankr1bg 9817 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) | |
| 15 | 13, 7, 14 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) |
| 16 | 12, 15 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅)) |
| 17 | r10 9782 | . . . . 5 ⊢ (𝑅1‘∅) = ∅ | |
| 18 | 16, 17 | sseqtrdi 3999 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅) |
| 19 | ss0 4377 | . . . 4 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅)) |
| 22 | 10, 21 | impbid2 226 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∅c0 4308 ∪ cuni 4883 dom cdm 5654 “ cima 5657 Oncon0 6352 Lim wlim 6353 Fun wfun 6525 ‘cfv 6531 ωcom 7861 𝑅1cr1 9776 rankcrnk 9777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 df-rank 9779 |
| This theorem is referenced by: rankeq0 9875 |
| Copyright terms: Public domain | W3C validator |