| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankeq0b | Structured version Visualization version GIF version | ||
| Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankeq0b | ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6840 | . . 3 ⊢ (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅)) | |
| 2 | r1funlim 9695 | . . . . . . 7 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 3 | 2 | simpri 485 | . . . . . 6 ⊢ Lim dom 𝑅1 |
| 4 | limomss 7827 | . . . . . 6 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ω ⊆ dom 𝑅1 |
| 6 | peano1 7845 | . . . . 5 ⊢ ∅ ∈ ω | |
| 7 | 5, 6 | sselii 3940 | . . . 4 ⊢ ∅ ∈ dom 𝑅1 |
| 8 | rankonid 9758 | . . . 4 ⊢ (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (rank‘∅) = ∅ |
| 10 | 1, 9 | eqtrdi 2780 | . 2 ⊢ (𝐴 = ∅ → (rank‘𝐴) = ∅) |
| 11 | eqimss 4002 | . . . . . . 7 ⊢ ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅) | |
| 12 | 11 | adantl 481 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅) |
| 13 | simpl 482 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ∈ ∪ (𝑅1 “ On)) | |
| 14 | rankr1bg 9732 | . . . . . . 7 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) | |
| 15 | 13, 7, 14 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅)) |
| 16 | 12, 15 | mpbird 257 | . . . . 5 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅)) |
| 17 | r10 9697 | . . . . 5 ⊢ (𝑅1‘∅) = ∅ | |
| 18 | 16, 17 | sseqtrdi 3984 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅) |
| 19 | ss0 4361 | . . . 4 ⊢ (𝐴 ⊆ ∅ → 𝐴 = ∅) | |
| 20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅) |
| 21 | 20 | ex 412 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅)) |
| 22 | 10, 21 | impbid2 226 | 1 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ∅c0 4292 ∪ cuni 4867 dom cdm 5631 “ cima 5634 Oncon0 6320 Lim wlim 6321 Fun wfun 6493 ‘cfv 6499 ωcom 7822 𝑅1cr1 9691 rankcrnk 9692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-r1 9693 df-rank 9694 |
| This theorem is referenced by: rankeq0 9790 |
| Copyright terms: Public domain | W3C validator |