MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankeq0b Structured version   Visualization version   GIF version

Theorem rankeq0b 9903
Description: A set is empty iff its rank is empty. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankeq0b (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))

Proof of Theorem rankeq0b
StepHypRef Expression
1 fveq2 6901 . . 3 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
2 r1funlim 9809 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 484 . . . . . 6 Lim dom 𝑅1
4 limomss 7881 . . . . . 6 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
53, 4ax-mp 5 . . . . 5 ω ⊆ dom 𝑅1
6 peano1 7900 . . . . 5 ∅ ∈ ω
75, 6sselii 3976 . . . 4 ∅ ∈ dom 𝑅1
8 rankonid 9872 . . . 4 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
97, 8mpbi 229 . . 3 (rank‘∅) = ∅
101, 9eqtrdi 2782 . 2 (𝐴 = ∅ → (rank‘𝐴) = ∅)
11 eqimss 4038 . . . . . . 7 ((rank‘𝐴) = ∅ → (rank‘𝐴) ⊆ ∅)
1211adantl 480 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (rank‘𝐴) ⊆ ∅)
13 simpl 481 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 (𝑅1 “ On))
14 rankr1bg 9846 . . . . . . 7 ((𝐴 (𝑅1 “ On) ∧ ∅ ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1513, 7, 14sylancl 584 . . . . . 6 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → (𝐴 ⊆ (𝑅1‘∅) ↔ (rank‘𝐴) ⊆ ∅))
1612, 15mpbird 256 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ (𝑅1‘∅))
17 r10 9811 . . . . 5 (𝑅1‘∅) = ∅
1816, 17sseqtrdi 4030 . . . 4 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 ⊆ ∅)
19 ss0 4403 . . . 4 (𝐴 ⊆ ∅ → 𝐴 = ∅)
2018, 19syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) = ∅) → 𝐴 = ∅)
2120ex 411 . 2 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = ∅ → 𝐴 = ∅))
2210, 21impbid2 225 1 (𝐴 (𝑅1 “ On) → (𝐴 = ∅ ↔ (rank‘𝐴) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wss 3947  c0 4325   cuni 4913  dom cdm 5682  cima 5685  Oncon0 6376  Lim wlim 6377  Fun wfun 6548  cfv 6554  ωcom 7876  𝑅1cr1 9805  rankcrnk 9806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-r1 9807  df-rank 9808
This theorem is referenced by:  rankeq0  9904
  Copyright terms: Public domain W3C validator