MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fin Structured version   Visualization version   GIF version

Theorem r1fin 9809
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.)
Assertion
Ref Expression
r1fin (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)

Proof of Theorem r1fin
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6893 . . 3 (𝑛 = ∅ → (𝑅1𝑛) = (𝑅1‘∅))
21eleq1d 2811 . 2 (𝑛 = ∅ → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin))
3 fveq2 6893 . . 3 (𝑛 = 𝑚 → (𝑅1𝑛) = (𝑅1𝑚))
43eleq1d 2811 . 2 (𝑛 = 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝑚) ∈ Fin))
5 fveq2 6893 . . 3 (𝑛 = suc 𝑚 → (𝑅1𝑛) = (𝑅1‘suc 𝑚))
65eleq1d 2811 . 2 (𝑛 = suc 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
7 fveq2 6893 . . 3 (𝑛 = 𝐴 → (𝑅1𝑛) = (𝑅1𝐴))
87eleq1d 2811 . 2 (𝑛 = 𝐴 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝐴) ∈ Fin))
9 r10 9804 . . 3 (𝑅1‘∅) = ∅
10 0fi 9072 . . 3 ∅ ∈ Fin
119, 10eqeltri 2822 . 2 (𝑅1‘∅) ∈ Fin
12 pwfi 9352 . . . 4 ((𝑅1𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin)
13 r1funlim 9802 . . . . . . . . 9 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1413simpri 484 . . . . . . . 8 Lim dom 𝑅1
15 limomss 7873 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
1614, 15ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
1716sseli 3974 . . . . . 6 (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1)
18 r1sucg 9805 . . . . . 6 (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
1917, 18syl 17 . . . . 5 (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
2019eleq1d 2811 . . . 4 (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin))
2112, 20bitr4id 289 . . 3 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
2221biimpd 228 . 2 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin))
232, 4, 6, 8, 11, 22finds 7901 1 (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3946  c0 4322  𝒫 cpw 4597  dom cdm 5674  Lim wlim 6369  suc csuc 6370  Fun wfun 6540  cfv 6546  ωcom 7868  Fincfn 8966  𝑅1cr1 9798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-en 8967  df-dom 8968  df-fin 8970  df-r1 9800
This theorem is referenced by:  ackbij2lem2  10274  ackbij2  10277
  Copyright terms: Public domain W3C validator