| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1fin | Structured version Visualization version GIF version | ||
| Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
| Ref | Expression |
|---|---|
| r1fin | ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6831 | . . 3 ⊢ (𝑛 = ∅ → (𝑅1‘𝑛) = (𝑅1‘∅)) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑛 = ∅ → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin)) |
| 3 | fveq2 6831 | . . 3 ⊢ (𝑛 = 𝑚 → (𝑅1‘𝑛) = (𝑅1‘𝑚)) | |
| 4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝑚) ∈ Fin)) |
| 5 | fveq2 6831 | . . 3 ⊢ (𝑛 = suc 𝑚 → (𝑅1‘𝑛) = (𝑅1‘suc 𝑚)) | |
| 6 | 5 | eleq1d 2818 | . 2 ⊢ (𝑛 = suc 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
| 7 | fveq2 6831 | . . 3 ⊢ (𝑛 = 𝐴 → (𝑅1‘𝑛) = (𝑅1‘𝐴)) | |
| 8 | 7 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝐴 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝐴) ∈ Fin)) |
| 9 | r10 9672 | . . 3 ⊢ (𝑅1‘∅) = ∅ | |
| 10 | 0fi 8975 | . . 3 ⊢ ∅ ∈ Fin | |
| 11 | 9, 10 | eqeltri 2829 | . 2 ⊢ (𝑅1‘∅) ∈ Fin |
| 12 | pwfi 9214 | . . . 4 ⊢ ((𝑅1‘𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin) | |
| 13 | r1funlim 9670 | . . . . . . . . 9 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 14 | 13 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
| 15 | limomss 7810 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
| 17 | 16 | sseli 3926 | . . . . . 6 ⊢ (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1) |
| 18 | r1sucg 9673 | . . . . . 6 ⊢ (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) |
| 20 | 19 | eleq1d 2818 | . . . 4 ⊢ (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin)) |
| 21 | 12, 20 | bitr4id 290 | . . 3 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
| 22 | 21 | biimpd 229 | . 2 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin)) |
| 23 | 2, 4, 6, 8, 11, 22 | finds 7835 | 1 ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 dom cdm 5621 Lim wlim 6315 suc csuc 6316 Fun wfun 6483 ‘cfv 6489 ωcom 7805 Fincfn 8879 𝑅1cr1 9666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-en 8880 df-dom 8881 df-fin 8883 df-r1 9668 |
| This theorem is referenced by: ackbij2lem2 10141 ackbij2 10144 r1omfi 35188 |
| Copyright terms: Public domain | W3C validator |