| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1fin | Structured version Visualization version GIF version | ||
| Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
| Ref | Expression |
|---|---|
| r1fin | ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6887 | . . 3 ⊢ (𝑛 = ∅ → (𝑅1‘𝑛) = (𝑅1‘∅)) | |
| 2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑛 = ∅ → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin)) |
| 3 | fveq2 6887 | . . 3 ⊢ (𝑛 = 𝑚 → (𝑅1‘𝑛) = (𝑅1‘𝑚)) | |
| 4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝑚) ∈ Fin)) |
| 5 | fveq2 6887 | . . 3 ⊢ (𝑛 = suc 𝑚 → (𝑅1‘𝑛) = (𝑅1‘suc 𝑚)) | |
| 6 | 5 | eleq1d 2818 | . 2 ⊢ (𝑛 = suc 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
| 7 | fveq2 6887 | . . 3 ⊢ (𝑛 = 𝐴 → (𝑅1‘𝑛) = (𝑅1‘𝐴)) | |
| 8 | 7 | eleq1d 2818 | . 2 ⊢ (𝑛 = 𝐴 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝐴) ∈ Fin)) |
| 9 | r10 9791 | . . 3 ⊢ (𝑅1‘∅) = ∅ | |
| 10 | 0fi 9065 | . . 3 ⊢ ∅ ∈ Fin | |
| 11 | 9, 10 | eqeltri 2829 | . 2 ⊢ (𝑅1‘∅) ∈ Fin |
| 12 | pwfi 9340 | . . . 4 ⊢ ((𝑅1‘𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin) | |
| 13 | r1funlim 9789 | . . . . . . . . 9 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 14 | 13 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
| 15 | limomss 7875 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
| 16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
| 17 | 16 | sseli 3961 | . . . . . 6 ⊢ (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1) |
| 18 | r1sucg 9792 | . . . . . 6 ⊢ (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) | |
| 19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) |
| 20 | 19 | eleq1d 2818 | . . . 4 ⊢ (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin)) |
| 21 | 12, 20 | bitr4id 290 | . . 3 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
| 22 | 21 | biimpd 229 | . 2 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin)) |
| 23 | 2, 4, 6, 8, 11, 22 | finds 7901 | 1 ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ∅c0 4315 𝒫 cpw 4582 dom cdm 5667 Lim wlim 6366 suc csuc 6367 Fun wfun 6536 ‘cfv 6542 ωcom 7870 Fincfn 8968 𝑅1cr1 9785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-en 8969 df-dom 8970 df-fin 8972 df-r1 9787 |
| This theorem is referenced by: ackbij2lem2 10262 ackbij2 10265 |
| Copyright terms: Public domain | W3C validator |