MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fin Structured version   Visualization version   GIF version

Theorem r1fin 9811
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.)
Assertion
Ref Expression
r1fin (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)

Proof of Theorem r1fin
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6907 . . 3 (𝑛 = ∅ → (𝑅1𝑛) = (𝑅1‘∅))
21eleq1d 2824 . 2 (𝑛 = ∅ → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin))
3 fveq2 6907 . . 3 (𝑛 = 𝑚 → (𝑅1𝑛) = (𝑅1𝑚))
43eleq1d 2824 . 2 (𝑛 = 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝑚) ∈ Fin))
5 fveq2 6907 . . 3 (𝑛 = suc 𝑚 → (𝑅1𝑛) = (𝑅1‘suc 𝑚))
65eleq1d 2824 . 2 (𝑛 = suc 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
7 fveq2 6907 . . 3 (𝑛 = 𝐴 → (𝑅1𝑛) = (𝑅1𝐴))
87eleq1d 2824 . 2 (𝑛 = 𝐴 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝐴) ∈ Fin))
9 r10 9806 . . 3 (𝑅1‘∅) = ∅
10 0fi 9081 . . 3 ∅ ∈ Fin
119, 10eqeltri 2835 . 2 (𝑅1‘∅) ∈ Fin
12 pwfi 9355 . . . 4 ((𝑅1𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin)
13 r1funlim 9804 . . . . . . . . 9 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1413simpri 485 . . . . . . . 8 Lim dom 𝑅1
15 limomss 7892 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
1614, 15ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
1716sseli 3991 . . . . . 6 (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1)
18 r1sucg 9807 . . . . . 6 (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
1917, 18syl 17 . . . . 5 (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
2019eleq1d 2824 . . . 4 (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin))
2112, 20bitr4id 290 . . 3 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
2221biimpd 229 . 2 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin))
232, 4, 6, 8, 11, 22finds 7919 1 (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wss 3963  c0 4339  𝒫 cpw 4605  dom cdm 5689  Lim wlim 6387  suc csuc 6388  Fun wfun 6557  cfv 6563  ωcom 7887  Fincfn 8984  𝑅1cr1 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-en 8985  df-dom 8986  df-fin 8988  df-r1 9802
This theorem is referenced by:  ackbij2lem2  10277  ackbij2  10280
  Copyright terms: Public domain W3C validator