MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fin Structured version   Visualization version   GIF version

Theorem r1fin 9688
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.)
Assertion
Ref Expression
r1fin (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)

Proof of Theorem r1fin
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6826 . . 3 (𝑛 = ∅ → (𝑅1𝑛) = (𝑅1‘∅))
21eleq1d 2813 . 2 (𝑛 = ∅ → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin))
3 fveq2 6826 . . 3 (𝑛 = 𝑚 → (𝑅1𝑛) = (𝑅1𝑚))
43eleq1d 2813 . 2 (𝑛 = 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝑚) ∈ Fin))
5 fveq2 6826 . . 3 (𝑛 = suc 𝑚 → (𝑅1𝑛) = (𝑅1‘suc 𝑚))
65eleq1d 2813 . 2 (𝑛 = suc 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
7 fveq2 6826 . . 3 (𝑛 = 𝐴 → (𝑅1𝑛) = (𝑅1𝐴))
87eleq1d 2813 . 2 (𝑛 = 𝐴 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝐴) ∈ Fin))
9 r10 9683 . . 3 (𝑅1‘∅) = ∅
10 0fi 8974 . . 3 ∅ ∈ Fin
119, 10eqeltri 2824 . 2 (𝑅1‘∅) ∈ Fin
12 pwfi 9226 . . . 4 ((𝑅1𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin)
13 r1funlim 9681 . . . . . . . . 9 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1413simpri 485 . . . . . . . 8 Lim dom 𝑅1
15 limomss 7811 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
1614, 15ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
1716sseli 3933 . . . . . 6 (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1)
18 r1sucg 9684 . . . . . 6 (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
1917, 18syl 17 . . . . 5 (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
2019eleq1d 2813 . . . 4 (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin))
2112, 20bitr4id 290 . . 3 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
2221biimpd 229 . 2 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin))
232, 4, 6, 8, 11, 22finds 7836 1 (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3905  c0 4286  𝒫 cpw 4553  dom cdm 5623  Lim wlim 6312  suc csuc 6313  Fun wfun 6480  cfv 6486  ωcom 7806  Fincfn 8879  𝑅1cr1 9677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-en 8880  df-dom 8881  df-fin 8883  df-r1 9679
This theorem is referenced by:  ackbij2lem2  10152  ackbij2  10155
  Copyright terms: Public domain W3C validator