Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1fin | Structured version Visualization version GIF version |
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
Ref | Expression |
---|---|
r1fin | ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . 3 ⊢ (𝑛 = ∅ → (𝑅1‘𝑛) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2823 | . 2 ⊢ (𝑛 = ∅ → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin)) |
3 | fveq2 6756 | . . 3 ⊢ (𝑛 = 𝑚 → (𝑅1‘𝑛) = (𝑅1‘𝑚)) | |
4 | 3 | eleq1d 2823 | . 2 ⊢ (𝑛 = 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝑚) ∈ Fin)) |
5 | fveq2 6756 | . . 3 ⊢ (𝑛 = suc 𝑚 → (𝑅1‘𝑛) = (𝑅1‘suc 𝑚)) | |
6 | 5 | eleq1d 2823 | . 2 ⊢ (𝑛 = suc 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
7 | fveq2 6756 | . . 3 ⊢ (𝑛 = 𝐴 → (𝑅1‘𝑛) = (𝑅1‘𝐴)) | |
8 | 7 | eleq1d 2823 | . 2 ⊢ (𝑛 = 𝐴 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝐴) ∈ Fin)) |
9 | r10 9457 | . . 3 ⊢ (𝑅1‘∅) = ∅ | |
10 | 0fin 8916 | . . 3 ⊢ ∅ ∈ Fin | |
11 | 9, 10 | eqeltri 2835 | . 2 ⊢ (𝑅1‘∅) ∈ Fin |
12 | pwfi 8923 | . . . 4 ⊢ ((𝑅1‘𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin) | |
13 | r1funlim 9455 | . . . . . . . . 9 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
14 | 13 | simpri 485 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
15 | limomss 7692 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
17 | 16 | sseli 3913 | . . . . . 6 ⊢ (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1) |
18 | r1sucg 9458 | . . . . . 6 ⊢ (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) |
20 | 19 | eleq1d 2823 | . . . 4 ⊢ (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin)) |
21 | 12, 20 | bitr4id 289 | . . 3 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
22 | 21 | biimpd 228 | . 2 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin)) |
23 | 2, 4, 6, 8, 11, 22 | finds 7719 | 1 ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 dom cdm 5580 Lim wlim 6252 suc csuc 6253 Fun wfun 6412 ‘cfv 6418 ωcom 7687 Fincfn 8691 𝑅1cr1 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-en 8692 df-fin 8695 df-r1 9453 |
This theorem is referenced by: ackbij2lem2 9927 ackbij2 9930 |
Copyright terms: Public domain | W3C validator |