![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1fin | Structured version Visualization version GIF version |
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.) |
Ref | Expression |
---|---|
r1fin | ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6893 | . . 3 ⊢ (𝑛 = ∅ → (𝑅1‘𝑛) = (𝑅1‘∅)) | |
2 | 1 | eleq1d 2811 | . 2 ⊢ (𝑛 = ∅ → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin)) |
3 | fveq2 6893 | . . 3 ⊢ (𝑛 = 𝑚 → (𝑅1‘𝑛) = (𝑅1‘𝑚)) | |
4 | 3 | eleq1d 2811 | . 2 ⊢ (𝑛 = 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝑚) ∈ Fin)) |
5 | fveq2 6893 | . . 3 ⊢ (𝑛 = suc 𝑚 → (𝑅1‘𝑛) = (𝑅1‘suc 𝑚)) | |
6 | 5 | eleq1d 2811 | . 2 ⊢ (𝑛 = suc 𝑚 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
7 | fveq2 6893 | . . 3 ⊢ (𝑛 = 𝐴 → (𝑅1‘𝑛) = (𝑅1‘𝐴)) | |
8 | 7 | eleq1d 2811 | . 2 ⊢ (𝑛 = 𝐴 → ((𝑅1‘𝑛) ∈ Fin ↔ (𝑅1‘𝐴) ∈ Fin)) |
9 | r10 9804 | . . 3 ⊢ (𝑅1‘∅) = ∅ | |
10 | 0fi 9072 | . . 3 ⊢ ∅ ∈ Fin | |
11 | 9, 10 | eqeltri 2822 | . 2 ⊢ (𝑅1‘∅) ∈ Fin |
12 | pwfi 9352 | . . . 4 ⊢ ((𝑅1‘𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin) | |
13 | r1funlim 9802 | . . . . . . . . 9 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
14 | 13 | simpri 484 | . . . . . . . 8 ⊢ Lim dom 𝑅1 |
15 | limomss 7873 | . . . . . . . 8 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
16 | 14, 15 | ax-mp 5 | . . . . . . 7 ⊢ ω ⊆ dom 𝑅1 |
17 | 16 | sseli 3974 | . . . . . 6 ⊢ (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1) |
18 | r1sucg 9805 | . . . . . 6 ⊢ (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) | |
19 | 17, 18 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1‘𝑚)) |
20 | 19 | eleq1d 2811 | . . . 4 ⊢ (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1‘𝑚) ∈ Fin)) |
21 | 12, 20 | bitr4id 289 | . . 3 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin)) |
22 | 21 | biimpd 228 | . 2 ⊢ (𝑚 ∈ ω → ((𝑅1‘𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin)) |
23 | 2, 4, 6, 8, 11, 22 | finds 7901 | 1 ⊢ (𝐴 ∈ ω → (𝑅1‘𝐴) ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 ∅c0 4322 𝒫 cpw 4597 dom cdm 5674 Lim wlim 6369 suc csuc 6370 Fun wfun 6540 ‘cfv 6546 ωcom 7868 Fincfn 8966 𝑅1cr1 9798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-en 8967 df-dom 8968 df-fin 8970 df-r1 9800 |
This theorem is referenced by: ackbij2lem2 10274 ackbij2 10277 |
Copyright terms: Public domain | W3C validator |