MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1fin Structured version   Visualization version   GIF version

Theorem r1fin 9702
Description: The first ω levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013.)
Assertion
Ref Expression
r1fin (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)

Proof of Theorem r1fin
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6840 . . 3 (𝑛 = ∅ → (𝑅1𝑛) = (𝑅1‘∅))
21eleq1d 2813 . 2 (𝑛 = ∅ → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘∅) ∈ Fin))
3 fveq2 6840 . . 3 (𝑛 = 𝑚 → (𝑅1𝑛) = (𝑅1𝑚))
43eleq1d 2813 . 2 (𝑛 = 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝑚) ∈ Fin))
5 fveq2 6840 . . 3 (𝑛 = suc 𝑚 → (𝑅1𝑛) = (𝑅1‘suc 𝑚))
65eleq1d 2813 . 2 (𝑛 = suc 𝑚 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
7 fveq2 6840 . . 3 (𝑛 = 𝐴 → (𝑅1𝑛) = (𝑅1𝐴))
87eleq1d 2813 . 2 (𝑛 = 𝐴 → ((𝑅1𝑛) ∈ Fin ↔ (𝑅1𝐴) ∈ Fin))
9 r10 9697 . . 3 (𝑅1‘∅) = ∅
10 0fi 8990 . . 3 ∅ ∈ Fin
119, 10eqeltri 2824 . 2 (𝑅1‘∅) ∈ Fin
12 pwfi 9244 . . . 4 ((𝑅1𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin)
13 r1funlim 9695 . . . . . . . . 9 (Fun 𝑅1 ∧ Lim dom 𝑅1)
1413simpri 485 . . . . . . . 8 Lim dom 𝑅1
15 limomss 7827 . . . . . . . 8 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
1614, 15ax-mp 5 . . . . . . 7 ω ⊆ dom 𝑅1
1716sseli 3939 . . . . . 6 (𝑚 ∈ ω → 𝑚 ∈ dom 𝑅1)
18 r1sucg 9698 . . . . . 6 (𝑚 ∈ dom 𝑅1 → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
1917, 18syl 17 . . . . 5 (𝑚 ∈ ω → (𝑅1‘suc 𝑚) = 𝒫 (𝑅1𝑚))
2019eleq1d 2813 . . . 4 (𝑚 ∈ ω → ((𝑅1‘suc 𝑚) ∈ Fin ↔ 𝒫 (𝑅1𝑚) ∈ Fin))
2112, 20bitr4id 290 . . 3 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin ↔ (𝑅1‘suc 𝑚) ∈ Fin))
2221biimpd 229 . 2 (𝑚 ∈ ω → ((𝑅1𝑚) ∈ Fin → (𝑅1‘suc 𝑚) ∈ Fin))
232, 4, 6, 8, 11, 22finds 7852 1 (𝐴 ∈ ω → (𝑅1𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3911  c0 4292  𝒫 cpw 4559  dom cdm 5631  Lim wlim 6321  suc csuc 6322  Fun wfun 6493  cfv 6499  ωcom 7822  Fincfn 8895  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-en 8896  df-dom 8897  df-fin 8899  df-r1 9693
This theorem is referenced by:  ackbij2lem2  10168  ackbij2  10171
  Copyright terms: Public domain W3C validator