![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version |
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8437 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
2 | funres 6596 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
4 | dmres 6017 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
5 | rdgdmlim 8438 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
6 | limomss 7876 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
8 | dfss2 3962 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
9 | 7, 8 | mpbi 229 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
10 | 4, 9 | eqtri 2753 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
11 | df-fn 6552 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
12 | 3, 10, 11 | mpbir2an 709 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∩ cin 3943 ⊆ wss 3944 dom cdm 5678 ↾ cres 5680 Lim wlim 6372 Fun wfun 6543 Fn wfn 6544 ωcom 7871 reccrdg 8430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 |
This theorem is referenced by: frsucmptn 8460 seqomlem2 8472 seqomlem3 8473 seqomlem4 8474 unblem4 9323 dffi3 9456 inf0 9646 inf3lem6 9658 alephfplem4 10132 alephfp 10133 infpssrlem3 10330 itunifn 10442 hsmexlem5 10455 axdclem2 10545 wunex2 10763 wuncval2 10772 peano5nni 12248 1nn 12256 peano2nn 12257 om2uzrani 13953 om2uzf1oi 13954 uzrdglem 13958 uzrdgfni 13959 uzrdg0i 13960 hashkf 14327 hashgval2 14373 noseq0 28213 noseqp1 28214 noseqind 28215 om2noseqfo 28221 noseqrdglem 28228 noseqrdgfn 28229 noseqrdg0 28230 neibastop2lem 35972 |
Copyright terms: Public domain | W3C validator |