| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version | ||
| Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8330 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | funres 6519 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
| 4 | dmres 5958 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
| 5 | rdgdmlim 8331 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 6 | limomss 7796 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 8 | dfss2 3918 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
| 10 | 4, 9 | eqtri 2753 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
| 11 | df-fn 6480 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3899 ⊆ wss 3900 dom cdm 5614 ↾ cres 5616 Lim wlim 6303 Fun wfun 6471 Fn wfn 6472 ωcom 7791 reccrdg 8323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 |
| This theorem is referenced by: frsucmptn 8353 seqomlem2 8365 seqomlem3 8366 seqomlem4 8367 unblem4 9174 dffi3 9310 inf0 9506 inf3lem6 9518 alephfplem4 9990 alephfp 9991 infpssrlem3 10188 itunifn 10300 hsmexlem5 10313 axdclem2 10403 wunex2 10621 wuncval2 10630 peano5nni 12120 1nn 12128 peano2nn 12129 om2uzrani 13851 om2uzf1oi 13852 uzrdglem 13856 uzrdgfni 13857 uzrdg0i 13858 hashkf 14231 hashgval2 14277 noseq0 28213 noseqp1 28214 noseqind 28215 om2noseqfo 28221 noseqrdglem 28228 noseqrdgfn 28229 noseqrdg0 28230 dfnns2 28290 neibastop2lem 36373 orbitinit 44968 orbitcl 44969 |
| Copyright terms: Public domain | W3C validator |