Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version |
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8152 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
2 | funres 6422 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
4 | dmres 5873 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
5 | rdgdmlim 8153 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
6 | limomss 7649 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
8 | df-ss 3883 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
9 | 7, 8 | mpbi 233 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
10 | 4, 9 | eqtri 2765 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
11 | df-fn 6383 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∩ cin 3865 ⊆ wss 3866 dom cdm 5551 ↾ cres 5553 Lim wlim 6214 Fun wfun 6374 Fn wfn 6375 ωcom 7644 reccrdg 8145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 |
This theorem is referenced by: frsucmptn 8174 seqomlem2 8187 seqomlem3 8188 seqomlem4 8189 unblem4 8926 dffi3 9047 inf0 9236 inf3lem6 9248 dftrpred2 9324 trpredpred 9333 trpredex 9343 alephfplem4 9721 alephfp 9722 infpssrlem3 9919 itunifn 10031 hsmexlem5 10044 axdclem2 10134 wunex2 10352 wuncval2 10361 peano5nni 11833 1nn 11841 peano2nn 11842 om2uzrani 13525 om2uzf1oi 13526 uzrdglem 13530 uzrdgfni 13531 uzrdg0i 13532 hashkf 13898 hashgval2 13945 neibastop2lem 34286 |
Copyright terms: Public domain | W3C validator |