| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version | ||
| Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8341 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | funres 6529 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
| 4 | dmres 5966 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
| 5 | rdgdmlim 8342 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 6 | limomss 7807 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 8 | dfss2 3915 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
| 10 | 4, 9 | eqtri 2754 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
| 11 | df-fn 6490 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 ⊆ wss 3897 dom cdm 5619 ↾ cres 5621 Lim wlim 6313 Fun wfun 6481 Fn wfn 6482 ωcom 7802 reccrdg 8334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 |
| This theorem is referenced by: frsucmptn 8364 seqomlem2 8376 seqomlem3 8377 seqomlem4 8378 unblem4 9185 dffi3 9321 inf0 9517 inf3lem6 9529 alephfplem4 10004 alephfp 10005 infpssrlem3 10202 itunifn 10314 hsmexlem5 10327 axdclem2 10417 wunex2 10635 wuncval2 10644 peano5nni 12134 1nn 12142 peano2nn 12143 om2uzrani 13865 om2uzf1oi 13866 uzrdglem 13870 uzrdgfni 13871 uzrdg0i 13872 hashkf 14245 hashgval2 14291 noseq0 28226 noseqp1 28227 noseqind 28228 om2noseqfo 28234 noseqrdglem 28241 noseqrdgfn 28242 noseqrdg0 28243 dfnns2 28303 neibastop2lem 36411 orbitinit 45054 orbitcl 45055 |
| Copyright terms: Public domain | W3C validator |