| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version | ||
| Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8387 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | funres 6561 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
| 4 | dmres 5986 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
| 5 | rdgdmlim 8388 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 6 | limomss 7850 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 8 | dfss2 3935 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
| 10 | 4, 9 | eqtri 2753 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
| 11 | df-fn 6517 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 ⊆ wss 3917 dom cdm 5641 ↾ cres 5643 Lim wlim 6336 Fun wfun 6508 Fn wfn 6509 ωcom 7845 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: frsucmptn 8410 seqomlem2 8422 seqomlem3 8423 seqomlem4 8424 unblem4 9249 dffi3 9389 inf0 9581 inf3lem6 9593 alephfplem4 10067 alephfp 10068 infpssrlem3 10265 itunifn 10377 hsmexlem5 10390 axdclem2 10480 wunex2 10698 wuncval2 10707 peano5nni 12196 1nn 12204 peano2nn 12205 om2uzrani 13924 om2uzf1oi 13925 uzrdglem 13929 uzrdgfni 13930 uzrdg0i 13931 hashkf 14304 hashgval2 14350 noseq0 28191 noseqp1 28192 noseqind 28193 om2noseqfo 28199 noseqrdglem 28206 noseqrdgfn 28207 noseqrdg0 28208 dfnns2 28268 neibastop2lem 36355 orbitinit 44953 orbitcl 44954 |
| Copyright terms: Public domain | W3C validator |