| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version | ||
| Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8361 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | funres 6542 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
| 4 | dmres 5972 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
| 5 | rdgdmlim 8362 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 6 | limomss 7827 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 8 | dfss2 3929 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
| 10 | 4, 9 | eqtri 2752 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
| 11 | df-fn 6502 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3910 ⊆ wss 3911 dom cdm 5631 ↾ cres 5633 Lim wlim 6321 Fun wfun 6493 Fn wfn 6494 ωcom 7822 reccrdg 8354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 |
| This theorem is referenced by: frsucmptn 8384 seqomlem2 8396 seqomlem3 8397 seqomlem4 8398 unblem4 9218 dffi3 9358 inf0 9550 inf3lem6 9562 alephfplem4 10036 alephfp 10037 infpssrlem3 10234 itunifn 10346 hsmexlem5 10359 axdclem2 10449 wunex2 10667 wuncval2 10676 peano5nni 12165 1nn 12173 peano2nn 12174 om2uzrani 13893 om2uzf1oi 13894 uzrdglem 13898 uzrdgfni 13899 uzrdg0i 13900 hashkf 14273 hashgval2 14319 noseq0 28224 noseqp1 28225 noseqind 28226 om2noseqfo 28232 noseqrdglem 28239 noseqrdgfn 28240 noseqrdg0 28241 dfnns2 28301 neibastop2lem 36341 orbitinit 44939 orbitcl 44940 |
| Copyright terms: Public domain | W3C validator |