| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version | ||
| Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
| Ref | Expression |
|---|---|
| frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun 8438 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
| 2 | funres 6588 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
| 4 | dmres 6010 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
| 5 | rdgdmlim 8439 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
| 6 | limomss 7874 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
| 7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
| 8 | dfss2 3949 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
| 9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
| 10 | 4, 9 | eqtri 2757 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
| 11 | df-fn 6544 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
| 12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∩ cin 3930 ⊆ wss 3931 dom cdm 5665 ↾ cres 5667 Lim wlim 6364 Fun wfun 6535 Fn wfn 6536 ωcom 7869 reccrdg 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 |
| This theorem is referenced by: frsucmptn 8461 seqomlem2 8473 seqomlem3 8474 seqomlem4 8475 unblem4 9313 dffi3 9453 inf0 9643 inf3lem6 9655 alephfplem4 10129 alephfp 10130 infpssrlem3 10327 itunifn 10439 hsmexlem5 10452 axdclem2 10542 wunex2 10760 wuncval2 10769 peano5nni 12251 1nn 12259 peano2nn 12260 om2uzrani 13975 om2uzf1oi 13976 uzrdglem 13980 uzrdgfni 13981 uzrdg0i 13982 hashkf 14354 hashgval2 14400 noseq0 28233 noseqp1 28234 noseqind 28235 om2noseqfo 28241 noseqrdglem 28248 noseqrdgfn 28249 noseqrdg0 28250 dfnns2 28299 neibastop2lem 36336 |
| Copyright terms: Public domain | W3C validator |