![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frfnom | Structured version Visualization version GIF version |
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
frfnom | ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgfun 8455 | . . 3 ⊢ Fun rec(𝐹, 𝐴) | |
2 | funres 6610 | . . 3 ⊢ (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun (rec(𝐹, 𝐴) ↾ ω) |
4 | dmres 6032 | . . 3 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴)) | |
5 | rdgdmlim 8456 | . . . . 5 ⊢ Lim dom rec(𝐹, 𝐴) | |
6 | limomss 7892 | . . . . 5 ⊢ (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom rec(𝐹, 𝐴) |
8 | dfss2 3981 | . . . 4 ⊢ (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω) | |
9 | 7, 8 | mpbi 230 | . . 3 ⊢ (ω ∩ dom rec(𝐹, 𝐴)) = ω |
10 | 4, 9 | eqtri 2763 | . 2 ⊢ dom (rec(𝐹, 𝐴) ↾ ω) = ω |
11 | df-fn 6566 | . 2 ⊢ ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω)) | |
12 | 3, 10, 11 | mpbir2an 711 | 1 ⊢ (rec(𝐹, 𝐴) ↾ ω) Fn ω |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3962 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 Lim wlim 6387 Fun wfun 6557 Fn wfn 6558 ωcom 7887 reccrdg 8448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 |
This theorem is referenced by: frsucmptn 8478 seqomlem2 8490 seqomlem3 8491 seqomlem4 8492 unblem4 9329 dffi3 9469 inf0 9659 inf3lem6 9671 alephfplem4 10145 alephfp 10146 infpssrlem3 10343 itunifn 10455 hsmexlem5 10468 axdclem2 10558 wunex2 10776 wuncval2 10785 peano5nni 12267 1nn 12275 peano2nn 12276 om2uzrani 13990 om2uzf1oi 13991 uzrdglem 13995 uzrdgfni 13996 uzrdg0i 13997 hashkf 14368 hashgval2 14414 noseq0 28311 noseqp1 28312 noseqind 28313 om2noseqfo 28319 noseqrdglem 28326 noseqrdgfn 28327 noseqrdg0 28328 dfnns2 28377 neibastop2lem 36343 |
Copyright terms: Public domain | W3C validator |