MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frfnom Structured version   Visualization version   GIF version

Theorem frfnom 8474
Description: The function generated by finite recursive definition generation is a function on omega. (Contributed by NM, 15-Oct-1996.) (Revised by Mario Carneiro, 14-Nov-2014.)
Assertion
Ref Expression
frfnom (rec(𝐹, 𝐴) ↾ ω) Fn ω

Proof of Theorem frfnom
StepHypRef Expression
1 rdgfun 8455 . . 3 Fun rec(𝐹, 𝐴)
2 funres 6610 . . 3 (Fun rec(𝐹, 𝐴) → Fun (rec(𝐹, 𝐴) ↾ ω))
31, 2ax-mp 5 . 2 Fun (rec(𝐹, 𝐴) ↾ ω)
4 dmres 6032 . . 3 dom (rec(𝐹, 𝐴) ↾ ω) = (ω ∩ dom rec(𝐹, 𝐴))
5 rdgdmlim 8456 . . . . 5 Lim dom rec(𝐹, 𝐴)
6 limomss 7892 . . . . 5 (Lim dom rec(𝐹, 𝐴) → ω ⊆ dom rec(𝐹, 𝐴))
75, 6ax-mp 5 . . . 4 ω ⊆ dom rec(𝐹, 𝐴)
8 dfss2 3981 . . . 4 (ω ⊆ dom rec(𝐹, 𝐴) ↔ (ω ∩ dom rec(𝐹, 𝐴)) = ω)
97, 8mpbi 230 . . 3 (ω ∩ dom rec(𝐹, 𝐴)) = ω
104, 9eqtri 2763 . 2 dom (rec(𝐹, 𝐴) ↾ ω) = ω
11 df-fn 6566 . 2 ((rec(𝐹, 𝐴) ↾ ω) Fn ω ↔ (Fun (rec(𝐹, 𝐴) ↾ ω) ∧ dom (rec(𝐹, 𝐴) ↾ ω) = ω))
123, 10, 11mpbir2an 711 1 (rec(𝐹, 𝐴) ↾ ω) Fn ω
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3962  wss 3963  dom cdm 5689  cres 5691  Lim wlim 6387  Fun wfun 6557   Fn wfn 6558  ωcom 7887  reccrdg 8448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449
This theorem is referenced by:  frsucmptn  8478  seqomlem2  8490  seqomlem3  8491  seqomlem4  8492  unblem4  9329  dffi3  9469  inf0  9659  inf3lem6  9671  alephfplem4  10145  alephfp  10146  infpssrlem3  10343  itunifn  10455  hsmexlem5  10468  axdclem2  10558  wunex2  10776  wuncval2  10785  peano5nni  12267  1nn  12275  peano2nn  12276  om2uzrani  13990  om2uzf1oi  13991  uzrdglem  13995  uzrdgfni  13996  uzrdg0i  13997  hashkf  14368  hashgval2  14414  noseq0  28311  noseqp1  28312  noseqind  28313  om2noseqfo  28319  noseqrdglem  28326  noseqrdgfn  28327  noseqrdg0  28328  dfnns2  28377  neibastop2lem  36343
  Copyright terms: Public domain W3C validator