MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankdmr1 Structured version   Visualization version   GIF version

Theorem rankdmr1 9230
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankdmr1 (rank‘𝐴) ∈ dom 𝑅1

Proof of Theorem rankdmr1
StepHypRef Expression
1 rankidb 9229 . . . 4 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
2 elfvdm 6702 . . . 4 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
31, 2syl 17 . . 3 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
4 r1funlim 9195 . . . . 5 (Fun 𝑅1 ∧ Lim dom 𝑅1)
54simpri 488 . . . 4 Lim dom 𝑅1
6 limsuc 7564 . . . 4 (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1))
75, 6ax-mp 5 . . 3 ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)
83, 7sylibr 236 . 2 (𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
9 rankvaln 9228 . . 3 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
10 limomss 7585 . . . . 5 (Lim dom 𝑅1 → ω ⊆ dom 𝑅1)
115, 10ax-mp 5 . . . 4 ω ⊆ dom 𝑅1
12 peano1 7601 . . . 4 ∅ ∈ ω
1311, 12sselii 3964 . . 3 ∅ ∈ dom 𝑅1
149, 13eqeltrdi 2921 . 2 𝐴 (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1)
158, 14pm2.61i 184 1 (rank‘𝐴) ∈ dom 𝑅1
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wcel 2114  wss 3936  c0 4291   cuni 4838  dom cdm 5555  cima 5558  Oncon0 6191  Lim wlim 6192  suc csuc 6193  Fun wfun 6349  cfv 6355  ωcom 7580  𝑅1cr1 9191  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-rank 9194
This theorem is referenced by:  r1rankidb  9233  pwwf  9236  unwf  9239  uniwf  9248  rankr1c  9250  rankelb  9253  rankval3b  9255  rankonid  9258  rankssb  9277  rankr1id  9291
  Copyright terms: Public domain W3C validator