![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankdmr1 | Structured version Visualization version GIF version |
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankdmr1 | ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankidb 8962 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
2 | elfvdm 6480 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
4 | r1funlim 8928 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
5 | 4 | simpri 481 | . . . 4 ⊢ Lim dom 𝑅1 |
6 | limsuc 7329 | . . . 4 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
8 | 3, 7 | sylibr 226 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
9 | rankvaln 8961 | . . 3 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | |
10 | limomss 7350 | . . . . 5 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
11 | 5, 10 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom 𝑅1 |
12 | peano1 7365 | . . . 4 ⊢ ∅ ∈ ω | |
13 | 11, 12 | sselii 3818 | . . 3 ⊢ ∅ ∈ dom 𝑅1 |
14 | 9, 13 | syl6eqel 2867 | . 2 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
15 | 8, 14 | pm2.61i 177 | 1 ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 ∈ wcel 2107 ⊆ wss 3792 ∅c0 4141 ∪ cuni 4673 dom cdm 5357 “ cima 5360 Oncon0 5978 Lim wlim 5979 suc csuc 5980 Fun wfun 6131 ‘cfv 6137 ωcom 7345 𝑅1cr1 8924 rankcrnk 8925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-r1 8926 df-rank 8927 |
This theorem is referenced by: r1rankidb 8966 pwwf 8969 unwf 8972 uniwf 8981 rankr1c 8983 rankelb 8986 rankval3b 8988 rankonid 8991 rankssb 9010 rankr1id 9024 |
Copyright terms: Public domain | W3C validator |