Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankdmr1 | Structured version Visualization version GIF version |
Description: A rank is a member of the cumulative hierarchy. (Contributed by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankdmr1 | ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankidb 9252 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
2 | elfvdm 6688 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
4 | r1funlim 9218 | . . . . 5 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
5 | 4 | simpri 490 | . . . 4 ⊢ Lim dom 𝑅1 |
6 | limsuc 7561 | . . . 4 ⊢ (Lim dom 𝑅1 → ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ ((rank‘𝐴) ∈ dom 𝑅1 ↔ suc (rank‘𝐴) ∈ dom 𝑅1) |
8 | 3, 7 | sylibr 237 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
9 | rankvaln 9251 | . . 3 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∅) | |
10 | limomss 7582 | . . . . 5 ⊢ (Lim dom 𝑅1 → ω ⊆ dom 𝑅1) | |
11 | 5, 10 | ax-mp 5 | . . . 4 ⊢ ω ⊆ dom 𝑅1 |
12 | peano1 7598 | . . . 4 ⊢ ∅ ∈ ω | |
13 | 11, 12 | sselii 3890 | . . 3 ⊢ ∅ ∈ dom 𝑅1 |
14 | 9, 13 | eqeltrdi 2861 | . 2 ⊢ (¬ 𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) ∈ dom 𝑅1) |
15 | 8, 14 | pm2.61i 185 | 1 ⊢ (rank‘𝐴) ∈ dom 𝑅1 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∈ wcel 2112 ⊆ wss 3859 ∅c0 4226 ∪ cuni 4796 dom cdm 5522 “ cima 5525 Oncon0 6167 Lim wlim 6168 suc csuc 6169 Fun wfun 6327 ‘cfv 6333 ωcom 7577 𝑅1cr1 9214 rankcrnk 9215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-om 7578 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-r1 9216 df-rank 9217 |
This theorem is referenced by: r1rankidb 9256 pwwf 9259 unwf 9262 uniwf 9271 rankr1c 9273 rankelb 9276 rankval3b 9278 rankonid 9281 rankssb 9300 rankr1id 9314 |
Copyright terms: Public domain | W3C validator |