Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslininds Structured version   Visualization version   GIF version

Theorem lindslininds 44447
Description: Equivalence of definitions df-linds 20879 and df-lininds 44425 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
lindslininds ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 linIndS 𝑀𝑆 ∈ (LIndS‘𝑀)))

Proof of Theorem lindslininds
Dummy variables 𝑓 𝑔 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
2 eqid 2818 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
3 eqid 2818 . . . 4 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
4 eqid 2818 . . . 4 (0g𝑀) = (0g𝑀)
51, 2, 3, 4lindslinindsimp1 44440 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀)))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
61, 2, 3, 4lindslinindsimp2 44446 . . 3 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
75, 6impbid 213 . 2 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀)))) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
8 eqid 2818 . . 3 (Base‘𝑀) = (Base‘𝑀)
98, 4, 1, 2, 3islininds 44429 . 2 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀)) → ∀𝑥𝑆 (𝑓𝑥) = (0g‘(Scalar‘𝑀))))))
10 eqid 2818 . . . 4 ( ·𝑠𝑀) = ( ·𝑠𝑀)
11 eqid 2818 . . . 4 (LSpan‘𝑀) = (LSpan‘𝑀)
128, 10, 11, 1, 2, 3islinds2 20885 . . 3 (𝑀 ∈ LMod → (𝑆 ∈ (LIndS‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
1312adantl 482 . 2 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 ∈ (LIndS‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))))
147, 9, 133bitr4d 312 1 ((𝑆𝑉𝑀 ∈ LMod) → (𝑆 linIndS 𝑀𝑆 ∈ (LIndS‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  cdif 3930  wss 3933  𝒫 cpw 4535  {csn 4557   class class class wbr 5057  cfv 6348  (class class class)co 7145  m cmap 8395   finSupp cfsupp 8821  Basecbs 16471  Scalarcsca 16556   ·𝑠 cvsca 16557  0gc0g 16701  LModclmod 19563  LSpanclspn 19672  LIndSclinds 20877   linC clinc 44387   linIndS clininds 44423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-seq 13358  df-hash 13679  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-0g 16703  df-gsum 16704  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-mhm 17944  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-mulg 18163  df-subg 18214  df-ghm 18294  df-cntz 18385  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lindf 20878  df-linds 20879  df-linc 44389  df-lco 44390  df-lininds 44425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator