![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslininds | Structured version Visualization version GIF version |
Description: Equivalence of definitions df-linds 21368 and df-lininds 47207 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lindslininds | β’ ((π β π β§ π β LMod) β (π linIndS π β π β (LIndSβπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (Scalarβπ) = (Scalarβπ) | |
2 | eqid 2732 | . . . 4 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
3 | eqid 2732 | . . . 4 β’ (0gβ(Scalarβπ)) = (0gβ(Scalarβπ)) | |
4 | eqid 2732 | . . . 4 β’ (0gβπ) = (0gβπ) | |
5 | 1, 2, 3, 4 | lindslinindsimp1 47222 | . . 3 β’ ((π β π β§ π β LMod) β ((π β π« (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)((π finSupp (0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ)))) β (π β (Baseβπ) β§ βπ β π βπ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))}) Β¬ (π( Β·π βπ)π ) β ((LSpanβπ)β(π β {π }))))) |
6 | 1, 2, 3, 4 | lindslinindsimp2 47228 | . . 3 β’ ((π β π β§ π β LMod) β ((π β (Baseβπ) β§ βπ β π βπ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))}) Β¬ (π( Β·π βπ)π ) β ((LSpanβπ)β(π β {π }))) β (π β π« (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)((π finSupp (0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ)))))) |
7 | 5, 6 | impbid 211 | . 2 β’ ((π β π β§ π β LMod) β ((π β π« (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)((π finSupp (0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ)))) β (π β (Baseβπ) β§ βπ β π βπ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))}) Β¬ (π( Β·π βπ)π ) β ((LSpanβπ)β(π β {π }))))) |
8 | eqid 2732 | . . 3 β’ (Baseβπ) = (Baseβπ) | |
9 | 8, 4, 1, 2, 3 | islininds 47211 | . 2 β’ ((π β π β§ π β LMod) β (π linIndS π β (π β π« (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)((π finSupp (0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ)) β βπ₯ β π (πβπ₯) = (0gβ(Scalarβπ)))))) |
10 | eqid 2732 | . . . 4 β’ ( Β·π βπ) = ( Β·π βπ) | |
11 | eqid 2732 | . . . 4 β’ (LSpanβπ) = (LSpanβπ) | |
12 | 8, 10, 11, 1, 2, 3 | islinds2 21374 | . . 3 β’ (π β LMod β (π β (LIndSβπ) β (π β (Baseβπ) β§ βπ β π βπ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))}) Β¬ (π( Β·π βπ)π ) β ((LSpanβπ)β(π β {π }))))) |
13 | 12 | adantl 482 | . 2 β’ ((π β π β§ π β LMod) β (π β (LIndSβπ) β (π β (Baseβπ) β§ βπ β π βπ β ((Baseβ(Scalarβπ)) β {(0gβ(Scalarβπ))}) Β¬ (π( Β·π βπ)π ) β ((LSpanβπ)β(π β {π }))))) |
14 | 7, 9, 13 | 3bitr4d 310 | 1 β’ ((π β π β§ π β LMod) β (π linIndS π β π β (LIndSβπ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β cdif 3945 β wss 3948 π« cpw 4602 {csn 4628 class class class wbr 5148 βcfv 6543 (class class class)co 7411 βm cmap 8822 finSupp cfsupp 9363 Basecbs 17146 Scalarcsca 17202 Β·π cvsca 17203 0gc0g 17387 LModclmod 20475 LSpanclspn 20587 LIndSclinds 21366 linC clinc 47169 linIndS clininds 47205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-n0 12475 df-z 12561 df-uz 12825 df-fz 13487 df-fzo 13630 df-seq 13969 df-hash 14293 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-0g 17389 df-gsum 17390 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-mhm 18673 df-submnd 18674 df-grp 18824 df-minusg 18825 df-sbg 18826 df-mulg 18953 df-subg 19005 df-ghm 19092 df-cntz 19183 df-cmn 19652 df-abl 19653 df-mgp 19990 df-ur 20007 df-ring 20060 df-lmod 20477 df-lss 20548 df-lsp 20588 df-lindf 21367 df-linds 21368 df-linc 47171 df-lco 47172 df-lininds 47207 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |