![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lindslininds | Structured version Visualization version GIF version |
Description: Equivalence of definitions df-linds 21672 and df-lininds 47285 for (linear) independence for (left) modules. (Contributed by AV, 26-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
lindslininds | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
2 | eqid 2731 | . . . 4 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
3 | eqid 2731 | . . . 4 ⊢ (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀)) | |
4 | eqid 2731 | . . . 4 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
5 | 1, 2, 3, 4 | lindslinindsimp1 47300 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀)))) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |
6 | 1, 2, 3, 4 | lindslinindsimp2 47306 | . . 3 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀)))))) |
7 | 5, 6 | impbid 211 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀)))) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |
8 | eqid 2731 | . . 3 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
9 | 8, 4, 1, 2, 3 | islininds 47289 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀)) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = (0g‘(Scalar‘𝑀)))))) |
10 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
11 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
12 | 8, 10, 11, 1, 2, 3 | islinds2 21678 | . . 3 ⊢ (𝑀 ∈ LMod → (𝑆 ∈ (LIndS‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |
13 | 12 | adantl 481 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 ∈ (LIndS‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠 ∈ 𝑆 ∀𝑔 ∈ ((Base‘(Scalar‘𝑀)) ∖ {(0g‘(Scalar‘𝑀))}) ¬ (𝑔( ·𝑠 ‘𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))) |
14 | 7, 9, 13 | 3bitr4d 311 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑀 ∈ LMod) → (𝑆 linIndS 𝑀 ↔ 𝑆 ∈ (LIndS‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 𝒫 cpw 4602 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 ↑m cmap 8826 finSupp cfsupp 9367 Basecbs 17151 Scalarcsca 17207 ·𝑠 cvsca 17208 0gc0g 17392 LModclmod 20702 LSpanclspn 20814 LIndSclinds 21670 linC clinc 47247 linIndS clininds 47283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-oi 9511 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-n0 12480 df-z 12566 df-uz 12830 df-fz 13492 df-fzo 13635 df-seq 13974 df-hash 14298 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-0g 17394 df-gsum 17395 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19046 df-ghm 19135 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-lmod 20704 df-lss 20775 df-lsp 20815 df-lindf 21671 df-linds 21672 df-linc 47249 df-lco 47250 df-lininds 47285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |