Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatval Structured version   Visualization version   GIF version

Theorem lmatval 32781
Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Assertion
Ref Expression
lmatval (𝑀 ∈ 𝑉 β†’ (litMatβ€˜π‘€) = (𝑖 ∈ (1...(β™―β€˜π‘€)), 𝑗 ∈ (1...(β™―β€˜(π‘€β€˜0))) ↦ ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
Distinct variable group:   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem lmatval
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝑀 ∈ 𝑉 β†’ 𝑀 ∈ V)
2 fveq2 6888 . . . . 5 (π‘š = 𝑀 β†’ (β™―β€˜π‘š) = (β™―β€˜π‘€))
32oveq2d 7421 . . . 4 (π‘š = 𝑀 β†’ (1...(β™―β€˜π‘š)) = (1...(β™―β€˜π‘€)))
4 fveq1 6887 . . . . . 6 (π‘š = 𝑀 β†’ (π‘šβ€˜0) = (π‘€β€˜0))
54fveq2d 6892 . . . . 5 (π‘š = 𝑀 β†’ (β™―β€˜(π‘šβ€˜0)) = (β™―β€˜(π‘€β€˜0)))
65oveq2d 7421 . . . 4 (π‘š = 𝑀 β†’ (1...(β™―β€˜(π‘šβ€˜0))) = (1...(β™―β€˜(π‘€β€˜0))))
7 fveq1 6887 . . . . 5 (π‘š = 𝑀 β†’ (π‘šβ€˜(𝑖 βˆ’ 1)) = (π‘€β€˜(𝑖 βˆ’ 1)))
87fveq1d 6890 . . . 4 (π‘š = 𝑀 β†’ ((π‘šβ€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1)) = ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1)))
93, 6, 8mpoeq123dv 7480 . . 3 (π‘š = 𝑀 β†’ (𝑖 ∈ (1...(β™―β€˜π‘š)), 𝑗 ∈ (1...(β™―β€˜(π‘šβ€˜0))) ↦ ((π‘šβ€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))) = (𝑖 ∈ (1...(β™―β€˜π‘€)), 𝑗 ∈ (1...(β™―β€˜(π‘€β€˜0))) ↦ ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
10 df-lmat 32780 . . 3 litMat = (π‘š ∈ V ↦ (𝑖 ∈ (1...(β™―β€˜π‘š)), 𝑗 ∈ (1...(β™―β€˜(π‘šβ€˜0))) ↦ ((π‘šβ€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
11 ovex 7438 . . . 4 (1...(β™―β€˜π‘€)) ∈ V
12 ovex 7438 . . . 4 (1...(β™―β€˜(π‘€β€˜0))) ∈ V
1311, 12mpoex 8062 . . 3 (𝑖 ∈ (1...(β™―β€˜π‘€)), 𝑗 ∈ (1...(β™―β€˜(π‘€β€˜0))) ↦ ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))) ∈ V
149, 10, 13fvmpt 6995 . 2 (𝑀 ∈ V β†’ (litMatβ€˜π‘€) = (𝑖 ∈ (1...(β™―β€˜π‘€)), 𝑗 ∈ (1...(β™―β€˜(π‘€β€˜0))) ↦ ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
151, 14syl 17 1 (𝑀 ∈ 𝑉 β†’ (litMatβ€˜π‘€) = (𝑖 ∈ (1...(β™―β€˜π‘€)), 𝑗 ∈ (1...(β™―β€˜(π‘€β€˜0))) ↦ ((π‘€β€˜(𝑖 βˆ’ 1))β€˜(𝑗 βˆ’ 1))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  0cc0 11106  1c1 11107   βˆ’ cmin 11440  ...cfz 13480  β™―chash 14286  litMatclmat 32779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7971  df-2nd 7972  df-lmat 32780
This theorem is referenced by:  lmatfval  32782  lmatcl  32784
  Copyright terms: Public domain W3C validator