![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatval | Structured version Visualization version GIF version |
Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmatval | β’ (π β π β (litMatβπ) = (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π β π β π β V) | |
2 | fveq2 6888 | . . . . 5 β’ (π = π β (β―βπ) = (β―βπ)) | |
3 | 2 | oveq2d 7421 | . . . 4 β’ (π = π β (1...(β―βπ)) = (1...(β―βπ))) |
4 | fveq1 6887 | . . . . . 6 β’ (π = π β (πβ0) = (πβ0)) | |
5 | 4 | fveq2d 6892 | . . . . 5 β’ (π = π β (β―β(πβ0)) = (β―β(πβ0))) |
6 | 5 | oveq2d 7421 | . . . 4 β’ (π = π β (1...(β―β(πβ0))) = (1...(β―β(πβ0)))) |
7 | fveq1 6887 | . . . . 5 β’ (π = π β (πβ(π β 1)) = (πβ(π β 1))) | |
8 | 7 | fveq1d 6890 | . . . 4 β’ (π = π β ((πβ(π β 1))β(π β 1)) = ((πβ(π β 1))β(π β 1))) |
9 | 3, 6, 8 | mpoeq123dv 7480 | . . 3 β’ (π = π β (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1))) = (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) |
10 | df-lmat 32780 | . . 3 β’ litMat = (π β V β¦ (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) | |
11 | ovex 7438 | . . . 4 β’ (1...(β―βπ)) β V | |
12 | ovex 7438 | . . . 4 β’ (1...(β―β(πβ0))) β V | |
13 | 11, 12 | mpoex 8062 | . . 3 β’ (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1))) β V |
14 | 9, 10, 13 | fvmpt 6995 | . 2 β’ (π β V β (litMatβπ) = (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) |
15 | 1, 14 | syl 17 | 1 β’ (π β π β (litMatβπ) = (π β (1...(β―βπ)), π β (1...(β―β(πβ0))) β¦ ((πβ(π β 1))β(π β 1)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6540 (class class class)co 7405 β cmpo 7407 0cc0 11106 1c1 11107 β cmin 11440 ...cfz 13480 β―chash 14286 litMatclmat 32779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-lmat 32780 |
This theorem is referenced by: lmatfval 32782 lmatcl 32784 |
Copyright terms: Public domain | W3C validator |