| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatval | Structured version Visualization version GIF version | ||
| Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| Ref | Expression |
|---|---|
| lmatval | ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 2 | fveq2 6822 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘𝑚) = (♯‘𝑀)) | |
| 3 | 2 | oveq2d 7362 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘𝑚)) = (1...(♯‘𝑀))) |
| 4 | fveq1 6821 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚‘0) = (𝑀‘0)) | |
| 5 | 4 | fveq2d 6826 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘(𝑚‘0)) = (♯‘(𝑀‘0))) |
| 6 | 5 | oveq2d 7362 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘(𝑚‘0))) = (1...(♯‘(𝑀‘0)))) |
| 7 | fveq1 6821 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑚‘(𝑖 − 1)) = (𝑀‘(𝑖 − 1))) | |
| 8 | 7 | fveq1d 6824 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) |
| 9 | 3, 6, 8 | mpoeq123dv 7421 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| 10 | df-lmat 33820 | . . 3 ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | |
| 11 | ovex 7379 | . . . 4 ⊢ (1...(♯‘𝑀)) ∈ V | |
| 12 | ovex 7379 | . . . 4 ⊢ (1...(♯‘(𝑀‘0))) ∈ V | |
| 13 | 11, 12 | mpoex 8011 | . . 3 ⊢ (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) ∈ V |
| 14 | 9, 10, 13 | fvmpt 6929 | . 2 ⊢ (𝑀 ∈ V → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| 15 | 1, 14 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 0cc0 11003 1c1 11004 − cmin 11341 ...cfz 13404 ♯chash 14234 litMatclmat 33819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-lmat 33820 |
| This theorem is referenced by: lmatfval 33822 lmatcl 33824 |
| Copyright terms: Public domain | W3C validator |