Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatval | Structured version Visualization version GIF version |
Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmatval | ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
2 | fveq2 6774 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘𝑚) = (♯‘𝑀)) | |
3 | 2 | oveq2d 7291 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘𝑚)) = (1...(♯‘𝑀))) |
4 | fveq1 6773 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚‘0) = (𝑀‘0)) | |
5 | 4 | fveq2d 6778 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘(𝑚‘0)) = (♯‘(𝑀‘0))) |
6 | 5 | oveq2d 7291 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘(𝑚‘0))) = (1...(♯‘(𝑀‘0)))) |
7 | fveq1 6773 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑚‘(𝑖 − 1)) = (𝑀‘(𝑖 − 1))) | |
8 | 7 | fveq1d 6776 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) |
9 | 3, 6, 8 | mpoeq123dv 7350 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
10 | df-lmat 31762 | . . 3 ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | |
11 | ovex 7308 | . . . 4 ⊢ (1...(♯‘𝑀)) ∈ V | |
12 | ovex 7308 | . . . 4 ⊢ (1...(♯‘(𝑀‘0))) ∈ V | |
13 | 11, 12 | mpoex 7920 | . . 3 ⊢ (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) ∈ V |
14 | 9, 10, 13 | fvmpt 6875 | . 2 ⊢ (𝑀 ∈ V → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 0cc0 10871 1c1 10872 − cmin 11205 ...cfz 13239 ♯chash 14044 litMatclmat 31761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-lmat 31762 |
This theorem is referenced by: lmatfval 31764 lmatcl 31766 |
Copyright terms: Public domain | W3C validator |