Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatval | Structured version Visualization version GIF version |
Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
Ref | Expression |
---|---|
lmatval | ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3428 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
2 | fveq2 6658 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘𝑚) = (♯‘𝑀)) | |
3 | 2 | oveq2d 7166 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘𝑚)) = (1...(♯‘𝑀))) |
4 | fveq1 6657 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚‘0) = (𝑀‘0)) | |
5 | 4 | fveq2d 6662 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘(𝑚‘0)) = (♯‘(𝑀‘0))) |
6 | 5 | oveq2d 7166 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘(𝑚‘0))) = (1...(♯‘(𝑀‘0)))) |
7 | fveq1 6657 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑚‘(𝑖 − 1)) = (𝑀‘(𝑖 − 1))) | |
8 | 7 | fveq1d 6660 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) |
9 | 3, 6, 8 | mpoeq123dv 7223 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
10 | df-lmat 31283 | . . 3 ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | |
11 | ovex 7183 | . . . 4 ⊢ (1...(♯‘𝑀)) ∈ V | |
12 | ovex 7183 | . . . 4 ⊢ (1...(♯‘(𝑀‘0))) ∈ V | |
13 | 11, 12 | mpoex 7782 | . . 3 ⊢ (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) ∈ V |
14 | 9, 10, 13 | fvmpt 6759 | . 2 ⊢ (𝑀 ∈ V → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
15 | 1, 14 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ‘cfv 6335 (class class class)co 7150 ∈ cmpo 7152 0cc0 10575 1c1 10576 − cmin 10908 ...cfz 12939 ♯chash 13740 litMatclmat 31282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-lmat 31283 |
This theorem is referenced by: lmatfval 31285 lmatcl 31287 |
Copyright terms: Public domain | W3C validator |