| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lmatval | Structured version Visualization version GIF version | ||
| Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
| Ref | Expression |
|---|---|
| lmatval | ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
| 2 | fveq2 6858 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘𝑚) = (♯‘𝑀)) | |
| 3 | 2 | oveq2d 7403 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘𝑚)) = (1...(♯‘𝑀))) |
| 4 | fveq1 6857 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑚‘0) = (𝑀‘0)) | |
| 5 | 4 | fveq2d 6862 | . . . . 5 ⊢ (𝑚 = 𝑀 → (♯‘(𝑚‘0)) = (♯‘(𝑀‘0))) |
| 6 | 5 | oveq2d 7403 | . . . 4 ⊢ (𝑚 = 𝑀 → (1...(♯‘(𝑚‘0))) = (1...(♯‘(𝑀‘0)))) |
| 7 | fveq1 6857 | . . . . 5 ⊢ (𝑚 = 𝑀 → (𝑚‘(𝑖 − 1)) = (𝑀‘(𝑖 − 1))) | |
| 8 | 7 | fveq1d 6860 | . . . 4 ⊢ (𝑚 = 𝑀 → ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) |
| 9 | 3, 6, 8 | mpoeq123dv 7464 | . . 3 ⊢ (𝑚 = 𝑀 → (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| 10 | df-lmat 33802 | . . 3 ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | |
| 11 | ovex 7420 | . . . 4 ⊢ (1...(♯‘𝑀)) ∈ V | |
| 12 | ovex 7420 | . . . 4 ⊢ (1...(♯‘(𝑀‘0))) ∈ V | |
| 13 | 11, 12 | mpoex 8058 | . . 3 ⊢ (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) ∈ V |
| 14 | 9, 10, 13 | fvmpt 6968 | . 2 ⊢ (𝑀 ∈ V → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| 15 | 1, 14 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 0cc0 11068 1c1 11069 − cmin 11405 ...cfz 13468 ♯chash 14295 litMatclmat 33801 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-lmat 33802 |
| This theorem is referenced by: lmatfval 33804 lmatcl 33806 |
| Copyright terms: Public domain | W3C validator |