Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmatval Structured version   Visualization version   GIF version

Theorem lmatval 30977
Description: Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.)
Assertion
Ref Expression
lmatval (𝑀𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
Distinct variable group:   𝑖,𝑀,𝑗
Allowed substitution hints:   𝑉(𝑖,𝑗)

Proof of Theorem lmatval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 elex 3510 . 2 (𝑀𝑉𝑀 ∈ V)
2 fveq2 6663 . . . . 5 (𝑚 = 𝑀 → (♯‘𝑚) = (♯‘𝑀))
32oveq2d 7161 . . . 4 (𝑚 = 𝑀 → (1...(♯‘𝑚)) = (1...(♯‘𝑀)))
4 fveq1 6662 . . . . . 6 (𝑚 = 𝑀 → (𝑚‘0) = (𝑀‘0))
54fveq2d 6667 . . . . 5 (𝑚 = 𝑀 → (♯‘(𝑚‘0)) = (♯‘(𝑀‘0)))
65oveq2d 7161 . . . 4 (𝑚 = 𝑀 → (1...(♯‘(𝑚‘0))) = (1...(♯‘(𝑀‘0))))
7 fveq1 6662 . . . . 5 (𝑚 = 𝑀 → (𝑚‘(𝑖 − 1)) = (𝑀‘(𝑖 − 1)))
87fveq1d 6665 . . . 4 (𝑚 = 𝑀 → ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)) = ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))
93, 6, 8mpoeq123dv 7218 . . 3 (𝑚 = 𝑀 → (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
10 df-lmat 30976 . . 3 litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))))
11 ovex 7178 . . . 4 (1...(♯‘𝑀)) ∈ V
12 ovex 7178 . . . 4 (1...(♯‘(𝑀‘0))) ∈ V
1311, 12mpoex 7766 . . 3 (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))) ∈ V
149, 10, 13fvmpt 6761 . 2 (𝑀 ∈ V → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
151, 14syl 17 1 (𝑀𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  Vcvv 3492  cfv 6348  (class class class)co 7145  cmpo 7147  0cc0 10525  1c1 10526  cmin 10858  ...cfz 12880  chash 13678  litMatclmat 30975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-lmat 30976
This theorem is referenced by:  lmatfval  30978  lmatcl  30980
  Copyright terms: Public domain W3C validator