Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsatlss Structured version   Visualization version   GIF version

Theorem lsatlss 39168
Description: The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lsatlss.s 𝑆 = (LSubSp‘𝑊)
lsatlss.a 𝐴 = (LSAtoms‘𝑊)
Assertion
Ref Expression
lsatlss (𝑊 ∈ LMod → 𝐴𝑆)

Proof of Theorem lsatlss
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . 3 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2733 . . 3 (LSpan‘𝑊) = (LSpan‘𝑊)
3 eqid 2733 . . 3 (0g𝑊) = (0g𝑊)
4 lsatlss.a . . 3 𝐴 = (LSAtoms‘𝑊)
51, 2, 3, 4lsatset 39162 . 2 (𝑊 ∈ LMod → 𝐴 = ran (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↦ ((LSpan‘𝑊)‘{𝑣})))
6 eldifi 4080 . . . . 5 (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) → 𝑣 ∈ (Base‘𝑊))
7 lsatlss.s . . . . . 6 𝑆 = (LSubSp‘𝑊)
81, 7, 2lspsncl 20919 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑣 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑣}) ∈ 𝑆)
96, 8sylan2 593 . . . 4 ((𝑊 ∈ LMod ∧ 𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)})) → ((LSpan‘𝑊)‘{𝑣}) ∈ 𝑆)
109fmpttd 7057 . . 3 (𝑊 ∈ LMod → (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↦ ((LSpan‘𝑊)‘{𝑣})):((Base‘𝑊) ∖ {(0g𝑊)})⟶𝑆)
1110frnd 6667 . 2 (𝑊 ∈ LMod → ran (𝑣 ∈ ((Base‘𝑊) ∖ {(0g𝑊)}) ↦ ((LSpan‘𝑊)‘{𝑣})) ⊆ 𝑆)
125, 11eqsstrd 3965 1 (𝑊 ∈ LMod → 𝐴𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cdif 3895  wss 3898  {csn 4577  cmpt 5176  ran crn 5622  cfv 6489  Basecbs 17127  0gc0g 17350  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  LSAtomsclsa 39146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mgp 20067  df-ur 20108  df-ring 20161  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lsatoms 39148
This theorem is referenced by:  lsatlssel  39169  lssats  39184  lpssat  39185  lssatle  39187  lssat  39188
  Copyright terms: Public domain W3C validator