Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpinN | Structured version Visualization version GIF version |
Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lshpin.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpin.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpin.t | ⊢ (𝜑 → 𝑇 ∈ 𝐻) |
lshpin.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshpinN | ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4167 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑇 | |
2 | lshpin.h | . . . . . 6 ⊢ 𝐻 = (LSHyp‘𝑊) | |
3 | lshpin.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑊 ∈ LVec) |
5 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) ∈ 𝐻) | |
6 | lshpin.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝐻) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑇 ∈ 𝐻) |
8 | 2, 4, 5, 7 | lshpcmp 36981 | . . . . 5 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → ((𝑇 ∩ 𝑈) ⊆ 𝑇 ↔ (𝑇 ∩ 𝑈) = 𝑇)) |
9 | 1, 8 | mpbii 232 | . . . 4 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) = 𝑇) |
10 | inss2 4168 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑈 | |
11 | lshpin.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑈 ∈ 𝐻) |
13 | 2, 4, 5, 12 | lshpcmp 36981 | . . . . 5 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → ((𝑇 ∩ 𝑈) ⊆ 𝑈 ↔ (𝑇 ∩ 𝑈) = 𝑈)) |
14 | 10, 13 | mpbii 232 | . . . 4 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) = 𝑈) |
15 | 9, 14 | eqtr3d 2781 | . . 3 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑇 = 𝑈) |
16 | 15 | ex 412 | . 2 ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 → 𝑇 = 𝑈)) |
17 | inidm 4157 | . . . 4 ⊢ (𝑇 ∩ 𝑇) = 𝑇 | |
18 | 17, 6 | eqeltrid 2844 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑇) ∈ 𝐻) |
19 | ineq2 4145 | . . . 4 ⊢ (𝑇 = 𝑈 → (𝑇 ∩ 𝑇) = (𝑇 ∩ 𝑈)) | |
20 | 19 | eleq1d 2824 | . . 3 ⊢ (𝑇 = 𝑈 → ((𝑇 ∩ 𝑇) ∈ 𝐻 ↔ (𝑇 ∩ 𝑈) ∈ 𝐻)) |
21 | 18, 20 | syl5ibcom 244 | . 2 ⊢ (𝜑 → (𝑇 = 𝑈 → (𝑇 ∩ 𝑈) ∈ 𝐻)) |
22 | 16, 21 | impbid 211 | 1 ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∩ cin 3890 ⊆ wss 3891 ‘cfv 6430 LVecclvec 20345 LSHypclsh 36968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-0g 17133 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cntz 18904 df-lsm 19222 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-drng 19974 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lvec 20346 df-lshyp 36970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |