![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpinN | Structured version Visualization version GIF version |
Description: The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lshpin.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpin.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpin.t | ⊢ (𝜑 → 𝑇 ∈ 𝐻) |
lshpin.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
Ref | Expression |
---|---|
lshpinN | ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4223 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑇 | |
2 | lshpin.h | . . . . . 6 ⊢ 𝐻 = (LSHyp‘𝑊) | |
3 | lshpin.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑊 ∈ LVec) |
5 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) ∈ 𝐻) | |
6 | lshpin.t | . . . . . . 7 ⊢ (𝜑 → 𝑇 ∈ 𝐻) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑇 ∈ 𝐻) |
8 | 2, 4, 5, 7 | lshpcmp 38370 | . . . . 5 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → ((𝑇 ∩ 𝑈) ⊆ 𝑇 ↔ (𝑇 ∩ 𝑈) = 𝑇)) |
9 | 1, 8 | mpbii 232 | . . . 4 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) = 𝑇) |
10 | inss2 4224 | . . . . 5 ⊢ (𝑇 ∩ 𝑈) ⊆ 𝑈 | |
11 | lshpin.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
12 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑈 ∈ 𝐻) |
13 | 2, 4, 5, 12 | lshpcmp 38370 | . . . . 5 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → ((𝑇 ∩ 𝑈) ⊆ 𝑈 ↔ (𝑇 ∩ 𝑈) = 𝑈)) |
14 | 10, 13 | mpbii 232 | . . . 4 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → (𝑇 ∩ 𝑈) = 𝑈) |
15 | 9, 14 | eqtr3d 2768 | . . 3 ⊢ ((𝜑 ∧ (𝑇 ∩ 𝑈) ∈ 𝐻) → 𝑇 = 𝑈) |
16 | 15 | ex 412 | . 2 ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 → 𝑇 = 𝑈)) |
17 | inidm 4213 | . . . 4 ⊢ (𝑇 ∩ 𝑇) = 𝑇 | |
18 | 17, 6 | eqeltrid 2831 | . . 3 ⊢ (𝜑 → (𝑇 ∩ 𝑇) ∈ 𝐻) |
19 | ineq2 4201 | . . . 4 ⊢ (𝑇 = 𝑈 → (𝑇 ∩ 𝑇) = (𝑇 ∩ 𝑈)) | |
20 | 19 | eleq1d 2812 | . . 3 ⊢ (𝑇 = 𝑈 → ((𝑇 ∩ 𝑇) ∈ 𝐻 ↔ (𝑇 ∩ 𝑈) ∈ 𝐻)) |
21 | 18, 20 | syl5ibcom 244 | . 2 ⊢ (𝜑 → (𝑇 = 𝑈 → (𝑇 ∩ 𝑈) ∈ 𝐻)) |
22 | 16, 21 | impbid 211 | 1 ⊢ (𝜑 → ((𝑇 ∩ 𝑈) ∈ 𝐻 ↔ 𝑇 = 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 ‘cfv 6536 LVecclvec 20947 LSHypclsh 38357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8209 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-submnd 18711 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cntz 19230 df-lsm 19553 df-cmn 19699 df-abl 19700 df-mgp 20037 df-rng 20055 df-ur 20084 df-ring 20137 df-oppr 20233 df-dvdsr 20256 df-unit 20257 df-invr 20287 df-drng 20586 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lvec 20948 df-lshyp 38359 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |