MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1 Structured version   Visualization version   GIF version

Theorem lsmless1 19679
Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1
StepHypRef Expression
1 subgrcl 19150 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
213ad2ant1 1133 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝐺 ∈ Grp)
3 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
43subgss 19146 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1133 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑇 ⊆ (Base‘𝐺))
63subgss 19146 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1134 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑈 ⊆ (Base‘𝐺))
8 simp3 1138 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑆𝑇)
9 lsmub1.p . . 3 = (LSSum‘𝐺)
103, 9lsmless1x 19663 . 2 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
112, 5, 7, 8, 10syl31anc 1374 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wss 3950  cfv 6560  (class class class)co 7432  Basecbs 17248  Grpcgrp 18952  SubGrpcsubg 19139  LSSumclsm 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-subg 19142  df-lsm 19655
This theorem is referenced by:  lsmelval2  21085  lcvexchlem4  39039
  Copyright terms: Public domain W3C validator