| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmless1 | Structured version Visualization version GIF version | ||
| Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmless1 | ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → (𝑆 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 19039 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → 𝐺 ∈ Grp) |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 3 | subgss 19035 | . . 3 ⊢ (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺)) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → 𝑇 ⊆ (Base‘𝐺)) |
| 6 | 3 | subgss 19035 | . . 3 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 7 | 6 | 3ad2ant2 1134 | . 2 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → 𝑈 ⊆ (Base‘𝐺)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → 𝑆 ⊆ 𝑇) | |
| 9 | lsmub1.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 10 | 3, 9 | lsmless1x 19551 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑆 ⊆ 𝑇) → (𝑆 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| 11 | 2, 5, 7, 8, 10 | syl31anc 1375 | 1 ⊢ ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆 ⊆ 𝑇) → (𝑆 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 Grpcgrp 18841 SubGrpcsubg 19028 LSSumclsm 19541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-subg 19031 df-lsm 19543 |
| This theorem is referenced by: lsmelval2 21014 lcvexchlem4 39076 |
| Copyright terms: Public domain | W3C validator |