MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1 Structured version   Visualization version   GIF version

Theorem lsmless1 19361
Description: Subset implies subgroup sum subset. (Contributed by NM, 6-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1
StepHypRef Expression
1 subgrcl 18856 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
213ad2ant1 1132 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝐺 ∈ Grp)
3 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
43subgss 18852 . . 3 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
543ad2ant1 1132 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑇 ⊆ (Base‘𝐺))
63subgss 18852 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1133 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑈 ⊆ (Base‘𝐺))
8 simp3 1137 . 2 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → 𝑆𝑇)
9 lsmub1.p . . 3 = (LSSum‘𝐺)
103, 9lsmless1x 19345 . 2 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
112, 5, 7, 8, 10syl31anc 1372 1 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑆𝑇) → (𝑆 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wss 3898  cfv 6479  (class class class)co 7337  Basecbs 17009  Grpcgrp 18673  SubGrpcsubg 18845  LSSumclsm 19335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-1st 7899  df-2nd 7900  df-subg 18848  df-lsm 19337
This theorem is referenced by:  lsmelval2  20453  lcvexchlem4  37312
  Copyright terms: Public domain W3C validator