MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1x Structured version   Visualization version   GIF version

Theorem lsmless1x 19554
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1x (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4052 . . . 4 (𝑅𝑇 → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21adantl 481 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
3 simpl1 1190 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝐺𝑉)
4 simpr 484 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝑇)
5 simpl2 1191 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑇𝐵)
64, 5sstrd 3993 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝐵)
7 simpl3 1192 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑈𝐵)
8 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
9 eqid 2731 . . . . 5 (+g𝐺) = (+g𝐺)
10 lsmless2.s . . . . 5 = (LSSum‘𝐺)
118, 9, 10lsmelvalx 19550 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
123, 6, 7, 11syl3anc 1370 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
138, 9, 10lsmelvalx 19550 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1413adantr 480 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
152, 12, 143imtr4d 293 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) → 𝑥 ∈ (𝑇 𝑈)))
1615ssrdv 3989 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wrex 3069  wss 3949  cfv 6544  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  LSSumclsm 19544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-lsm 19546
This theorem is referenced by:  lsmless1  19570  lsmless12  19572  lsmssspx  20844
  Copyright terms: Public domain W3C validator