MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1x Structured version   Visualization version   GIF version

Theorem lsmless1x 19247
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1x (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3993 . . . 4 (𝑅𝑇 → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21adantl 482 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
3 simpl1 1190 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝐺𝑉)
4 simpr 485 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝑇)
5 simpl2 1191 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑇𝐵)
64, 5sstrd 3936 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝐵)
7 simpl3 1192 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑈𝐵)
8 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
9 eqid 2740 . . . . 5 (+g𝐺) = (+g𝐺)
10 lsmless2.s . . . . 5 = (LSSum‘𝐺)
118, 9, 10lsmelvalx 19243 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
123, 6, 7, 11syl3anc 1370 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
138, 9, 10lsmelvalx 19243 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1413adantr 481 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
152, 12, 143imtr4d 294 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) → 𝑥 ∈ (𝑇 𝑈)))
1615ssrdv 3932 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wrex 3067  wss 3892  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  LSSumclsm 19237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-lsm 19239
This theorem is referenced by:  lsmless1  19263  lsmless12  19265  lsmssspx  20348
  Copyright terms: Public domain W3C validator