Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmless1x | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless1x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv 3988 | . . . 4 ⊢ (𝑅 ⊆ 𝑇 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
2 | 1 | adantl 482 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
3 | simpl1 1190 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝐺 ∈ 𝑉) | |
4 | simpr 485 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝑇) | |
5 | simpl2 1191 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑇 ⊆ 𝐵) | |
6 | 4, 5 | sstrd 3931 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝐵) |
7 | simpl3 1192 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑈 ⊆ 𝐵) | |
8 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
9 | eqid 2738 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
11 | 8, 9, 10 | lsmelvalx 19245 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
12 | 3, 6, 7, 11 | syl3anc 1370 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
13 | 8, 9, 10 | lsmelvalx 19245 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
14 | 13 | adantr 481 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
15 | 2, 12, 14 | 3imtr4d 294 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
16 | 15 | ssrdv 3927 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 LSSumclsm 19239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-lsm 19241 |
This theorem is referenced by: lsmless1 19265 lsmless12 19267 lsmssspx 20350 |
Copyright terms: Public domain | W3C validator |