| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmless1x | Structured version Visualization version GIF version | ||
| Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) |
| lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmless1x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrexv 4004 | . . . 4 ⊢ (𝑅 ⊆ 𝑇 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 3 | simpl1 1192 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝐺 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝑇) | |
| 5 | simpl2 1193 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑇 ⊆ 𝐵) | |
| 6 | 4, 5 | sstrd 3945 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝐵) |
| 7 | simpl3 1194 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑈 ⊆ 𝐵) | |
| 8 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 11 | 8, 9, 10 | lsmelvalx 19553 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 12 | 3, 6, 7, 11 | syl3anc 1373 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 13 | 8, 9, 10 | lsmelvalx 19553 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 14 | 13 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) |
| 15 | 2, 12, 14 | 3imtr4d 294 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈))) |
| 16 | 15 | ssrdv 3940 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 LSSumclsm 19547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-lsm 19549 |
| This theorem is referenced by: lsmless1 19573 lsmless12 19575 lsmssspx 21023 |
| Copyright terms: Public domain | W3C validator |