|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lsmless1x | Structured version Visualization version GIF version | ||
| Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| lsmless2.v | ⊢ 𝐵 = (Base‘𝐺) | 
| lsmless2.s | ⊢ ⊕ = (LSSum‘𝐺) | 
| Ref | Expression | 
|---|---|
| lsmless1x | ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrexv 4052 | . . . 4 ⊢ (𝑅 ⊆ 𝑇 → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧) → ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | 
| 3 | simpl1 1191 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝐺 ∈ 𝑉) | |
| 4 | simpr 484 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝑇) | |
| 5 | simpl2 1192 | . . . . 5 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑇 ⊆ 𝐵) | |
| 6 | 4, 5 | sstrd 3993 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑅 ⊆ 𝐵) | 
| 7 | simpl3 1193 | . . . 4 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → 𝑈 ⊆ 𝐵) | |
| 8 | lsmless2.v | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 9 | eqid 2736 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | lsmless2.s | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 11 | 8, 9, 10 | lsmelvalx 19659 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑅 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | 
| 12 | 3, 6, 7, 11 | syl3anc 1372 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑅 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | 
| 13 | 8, 9, 10 | lsmelvalx 19659 | . . . 4 ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | 
| 14 | 13 | adantr 480 | . . 3 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑇 ⊕ 𝑈) ↔ ∃𝑦 ∈ 𝑇 ∃𝑧 ∈ 𝑈 𝑥 = (𝑦(+g‘𝐺)𝑧))) | 
| 15 | 2, 12, 14 | 3imtr4d 294 | . 2 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑥 ∈ (𝑅 ⊕ 𝑈) → 𝑥 ∈ (𝑇 ⊕ 𝑈))) | 
| 16 | 15 | ssrdv 3988 | 1 ⊢ (((𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵) ∧ 𝑅 ⊆ 𝑇) → (𝑅 ⊕ 𝑈) ⊆ (𝑇 ⊕ 𝑈)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 LSSumclsm 19653 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-lsm 19655 | 
| This theorem is referenced by: lsmless1 19679 lsmless12 19681 lsmssspx 21088 | 
| Copyright terms: Public domain | W3C validator |