MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1x Structured version   Visualization version   GIF version

Theorem lsmless1x 19557
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1x (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 4004 . . . 4 (𝑅𝑇 → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21adantl 481 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
3 simpl1 1192 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝐺𝑉)
4 simpr 484 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝑇)
5 simpl2 1193 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑇𝐵)
64, 5sstrd 3945 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝐵)
7 simpl3 1194 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑈𝐵)
8 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
9 eqid 2731 . . . . 5 (+g𝐺) = (+g𝐺)
10 lsmless2.s . . . . 5 = (LSSum‘𝐺)
118, 9, 10lsmelvalx 19553 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
123, 6, 7, 11syl3anc 1373 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
138, 9, 10lsmelvalx 19553 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1413adantr 480 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
152, 12, 143imtr4d 294 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) → 𝑥 ∈ (𝑇 𝑈)))
1615ssrdv 3940 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  LSSumclsm 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-lsm 19549
This theorem is referenced by:  lsmless1  19573  lsmless12  19575  lsmssspx  21023
  Copyright terms: Public domain W3C validator