MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless1x Structured version   Visualization version   GIF version

Theorem lsmless1x 19249
Description: Subset implies subgroup sum subset (extended domain version). (Contributed by NM, 22-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmless2.v 𝐵 = (Base‘𝐺)
lsmless2.s = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless1x (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))

Proof of Theorem lsmless1x
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3988 . . . 4 (𝑅𝑇 → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
21adantl 482 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧) → ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
3 simpl1 1190 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝐺𝑉)
4 simpr 485 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝑇)
5 simpl2 1191 . . . . 5 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑇𝐵)
64, 5sstrd 3931 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑅𝐵)
7 simpl3 1192 . . . 4 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → 𝑈𝐵)
8 lsmless2.v . . . . 5 𝐵 = (Base‘𝐺)
9 eqid 2738 . . . . 5 (+g𝐺) = (+g𝐺)
10 lsmless2.s . . . . 5 = (LSSum‘𝐺)
118, 9, 10lsmelvalx 19245 . . . 4 ((𝐺𝑉𝑅𝐵𝑈𝐵) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
123, 6, 7, 11syl3anc 1370 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) ↔ ∃𝑦𝑅𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
138, 9, 10lsmelvalx 19245 . . . 4 ((𝐺𝑉𝑇𝐵𝑈𝐵) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
1413adantr 481 . . 3 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑇 𝑈) ↔ ∃𝑦𝑇𝑧𝑈 𝑥 = (𝑦(+g𝐺)𝑧)))
152, 12, 143imtr4d 294 . 2 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑥 ∈ (𝑅 𝑈) → 𝑥 ∈ (𝑇 𝑈)))
1615ssrdv 3927 1 (((𝐺𝑉𝑇𝐵𝑈𝐵) ∧ 𝑅𝑇) → (𝑅 𝑈) ⊆ (𝑇 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-lsm 19241
This theorem is referenced by:  lsmless1  19265  lsmless12  19267  lsmssspx  20350
  Copyright terms: Public domain W3C validator