| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmless2 | Structured version Visualization version GIF version | ||
| Description: Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
| Ref | Expression |
|---|---|
| lsmless2 | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgrcl 19028 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝐺 ∈ Grp) |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 4 | 3 | subgss 19024 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 5 | 4 | 3ad2ant1 1133 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑆 ⊆ (Base‘𝐺)) |
| 6 | 3 | subgss 19024 | . . 3 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
| 7 | 6 | 3ad2ant2 1134 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝐺)) |
| 8 | simp3 1138 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
| 9 | lsmub1.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 10 | 3, 9 | lsmless2x 19542 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
| 11 | 2, 5, 7, 8, 10 | syl31anc 1375 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Grpcgrp 18830 SubGrpcsubg 19017 LSSumclsm 19531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-subg 19020 df-lsm 19533 |
| This theorem is referenced by: lsmless12 19559 lsmmod 19572 lsmelval2 21007 lsmsat 38989 lsatcvat3 39033 cdlemn5pre 41182 dvh3dim3N 41431 |
| Copyright terms: Public domain | W3C validator |