MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless2 Structured version   Visualization version   GIF version

Theorem lsmless2 19266
Description: Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))

Proof of Theorem lsmless2
StepHypRef Expression
1 subgrcl 18760 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
213ad2ant1 1132 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝐺 ∈ Grp)
3 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
43subgss 18756 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
543ad2ant1 1132 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑆 ⊆ (Base‘𝐺))
63subgss 18756 . . 3 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
763ad2ant2 1133 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑈 ⊆ (Base‘𝐺))
8 simp3 1137 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → 𝑇𝑈)
9 lsmub1.p . . 3 = (LSSum‘𝐺)
103, 9lsmless2x 19250 . 2 (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
112, 5, 7, 8, 10syl31anc 1372 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  Basecbs 16912  Grpcgrp 18577  SubGrpcsubg 18749  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-subg 18752  df-lsm 19241
This theorem is referenced by:  lsmless12  19267  lsmmod  19281  lsmelval2  20347  lsmsat  37022  lsatcvat3  37066  cdlemn5pre  39214  dvh3dim3N  39463
  Copyright terms: Public domain W3C validator