![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmless2 | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset. (Contributed by NM, 25-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless2 | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19006 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | 1 | 3ad2ant1 1134 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝐺 ∈ Grp) |
3 | eqid 2733 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 3 | subgss 19002 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
5 | 4 | 3ad2ant1 1134 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑆 ⊆ (Base‘𝐺)) |
6 | 3 | subgss 19002 | . . 3 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
7 | 6 | 3ad2ant2 1135 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑈 ⊆ (Base‘𝐺)) |
8 | simp3 1139 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → 𝑇 ⊆ 𝑈) | |
9 | lsmub1.p | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
10 | 3, 9 | lsmless2x 19508 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
11 | 2, 5, 7, 8, 10 | syl31anc 1374 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3948 ‘cfv 6541 (class class class)co 7406 Basecbs 17141 Grpcgrp 18816 SubGrpcsubg 18995 LSSumclsm 19497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-subg 18998 df-lsm 19499 |
This theorem is referenced by: lsmless12 19525 lsmmod 19538 lsmelval2 20689 lsmsat 37867 lsatcvat3 37911 cdlemn5pre 40060 dvh3dim3N 40309 |
Copyright terms: Public domain | W3C validator |