![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 19157 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1144 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Grpcgrp 18964 SubGrpcsubg 19151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-subg 19154 |
This theorem is referenced by: subg0 19163 subginv 19164 subgmulgcl 19170 subgsubm 19179 subsubg 19180 subgint 19181 isnsg 19186 nsgconj 19190 isnsg3 19191 ssnmz 19197 nmznsg 19199 eqger 19209 eqgid 19211 eqgen 19212 eqgcpbl 19213 qusgrp 19217 quseccl 19218 qusadd 19219 qus0 19220 qusinv 19221 qussub 19222 ecqusaddcl 19224 resghm2 19264 resghm2b 19265 conjsubg 19281 conjsubgen 19282 conjnmz 19283 conjnmzb 19284 qusghm 19286 ghmqusnsg 19313 ghmquskerlem3 19317 subgga 19331 gastacos 19341 orbstafun 19342 cntrsubgnsg 19374 oppgsubg 19397 isslw 19641 sylow2blem1 19653 sylow2blem2 19654 sylow2blem3 19655 slwhash 19657 lsmval 19681 lsmelval 19682 lsmelvali 19683 lsmelvalm 19684 lsmsubg 19687 lsmless1 19693 lsmless2 19694 lsmless12 19695 lsmass 19702 lsm01 19704 lsm02 19705 subglsm 19706 lsmmod 19708 lsmcntz 19712 lsmcntzr 19713 lsmdisj2 19715 subgdisj1 19724 pj1f 19730 pj1id 19732 pj1lid 19734 pj1rid 19735 pj1ghm 19736 subgdmdprd 20069 subgdprd 20070 dprdsn 20071 pgpfaclem2 20117 cldsubg 24135 gsumsubg 33032 qusker 33357 grplsmid 33412 quslsm 33413 qus0g 33415 qusrn 33417 nsgqus0 33418 nsgmgclem 33419 nsgqusf1olem1 33421 nsgqusf1olem2 33422 nsgqusf1olem3 33423 |
Copyright terms: Public domain | W3C validator |