Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 18822 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1144 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ⊆ wss 3896 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 Grpcgrp 18644 SubGrpcsubg 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fv 6471 df-ov 7316 df-subg 18819 |
This theorem is referenced by: subg0 18828 subginv 18829 subgmulgcl 18835 subgsubm 18844 subsubg 18845 subgint 18846 isnsg 18850 nsgconj 18854 isnsg3 18855 ssnmz 18861 nmznsg 18863 eqger 18873 eqgid 18875 eqgen 18876 eqgcpbl 18877 qusgrp 18878 quseccl 18879 qusadd 18880 qus0 18881 qusinv 18882 qussub 18883 resghm2 18918 resghm2b 18919 conjsubg 18933 conjsubgen 18934 conjnmz 18935 conjnmzb 18936 qusghm 18938 subgga 18973 gastacos 18983 orbstafun 18984 cntrsubgnsg 19014 oppgsubg 19037 isslw 19280 sylow2blem1 19292 sylow2blem2 19293 sylow2blem3 19294 slwhash 19296 lsmval 19320 lsmelval 19321 lsmelvali 19322 lsmelvalm 19323 lsmsubg 19326 lsmless1 19332 lsmless2 19333 lsmless12 19334 lsmass 19342 lsm01 19344 lsm02 19345 subglsm 19346 lsmmod 19348 lsmcntz 19352 lsmcntzr 19353 lsmdisj2 19355 subgdisj1 19364 pj1f 19370 pj1id 19372 pj1lid 19374 pj1rid 19375 pj1ghm 19376 subgdmdprd 19704 subgdprd 19705 dprdsn 19706 pgpfaclem2 19752 cldsubg 23333 gsumsubg 31414 qusker 31653 grplsmid 31697 quslsm 31698 nsgqus0 31700 nsgmgclem 31701 nsgqusf1olem1 31703 nsgqusf1olem2 31704 nsgqusf1olem3 31705 |
Copyright terms: Public domain | W3C validator |