![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 19166 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 Grpcgrp 18973 SubGrpcsubg 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-subg 19163 |
This theorem is referenced by: subg0 19172 subginv 19173 subgmulgcl 19179 subgsubm 19188 subsubg 19189 subgint 19190 isnsg 19195 nsgconj 19199 isnsg3 19200 ssnmz 19206 nmznsg 19208 eqger 19218 eqgid 19220 eqgen 19221 eqgcpbl 19222 qusgrp 19226 quseccl 19227 qusadd 19228 qus0 19229 qusinv 19230 qussub 19231 ecqusaddcl 19233 resghm2 19273 resghm2b 19274 conjsubg 19290 conjsubgen 19291 conjnmz 19292 conjnmzb 19293 qusghm 19295 ghmqusnsg 19322 ghmquskerlem3 19326 subgga 19340 gastacos 19350 orbstafun 19351 cntrsubgnsg 19383 oppgsubg 19406 isslw 19650 sylow2blem1 19662 sylow2blem2 19663 sylow2blem3 19664 slwhash 19666 lsmval 19690 lsmelval 19691 lsmelvali 19692 lsmelvalm 19693 lsmsubg 19696 lsmless1 19702 lsmless2 19703 lsmless12 19704 lsmass 19711 lsm01 19713 lsm02 19714 subglsm 19715 lsmmod 19717 lsmcntz 19721 lsmcntzr 19722 lsmdisj2 19724 subgdisj1 19733 pj1f 19739 pj1id 19741 pj1lid 19743 pj1rid 19744 pj1ghm 19745 subgdmdprd 20078 subgdprd 20079 dprdsn 20080 pgpfaclem2 20126 cldsubg 24140 gsumsubg 33029 qusker 33342 grplsmid 33397 quslsm 33398 qus0g 33400 qusrn 33402 nsgqus0 33403 nsgmgclem 33404 nsgqusf1olem1 33406 nsgqusf1olem2 33407 nsgqusf1olem3 33408 |
Copyright terms: Public domain | W3C validator |