| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19041 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 Grpcgrp 18848 SubGrpcsubg 19035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-subg 19038 |
| This theorem is referenced by: subg0 19047 subginv 19048 subgmulgcl 19054 subgsubm 19063 subsubg 19064 subgint 19065 isnsg 19069 nsgconj 19073 isnsg3 19074 ssnmz 19080 nmznsg 19082 eqger 19092 eqgid 19094 eqgen 19095 eqgcpbl 19096 qusgrp 19100 quseccl 19101 qusadd 19102 qus0 19103 qusinv 19104 qussub 19105 ecqusaddcl 19107 resghm2 19147 resghm2b 19148 conjsubg 19164 conjsubgen 19165 conjnmz 19166 conjnmzb 19167 qusghm 19169 ghmqusnsg 19196 ghmquskerlem3 19200 subgga 19214 gastacos 19224 orbstafun 19225 cntrsubgnsg 19257 oppgsubg 19277 isslw 19522 sylow2blem1 19534 sylow2blem2 19535 sylow2blem3 19536 slwhash 19538 lsmval 19562 lsmelval 19563 lsmelvali 19564 lsmelvalm 19565 lsmsubg 19568 lsmless1 19574 lsmless2 19575 lsmless12 19576 lsmass 19583 lsm01 19585 lsm02 19586 subglsm 19587 lsmmod 19589 lsmcntz 19593 lsmcntzr 19594 lsmdisj2 19596 subgdisj1 19605 pj1f 19611 pj1id 19613 pj1lid 19615 pj1rid 19616 pj1ghm 19617 subgdmdprd 19950 subgdprd 19951 dprdsn 19952 pgpfaclem2 19998 cldsubg 24027 gsumsubg 33033 qusker 33321 grplsmid 33376 quslsm 33377 qus0g 33379 qusrn 33381 nsgqus0 33382 nsgmgclem 33383 nsgqusf1olem1 33385 nsgqusf1olem2 33386 nsgqusf1olem3 33387 |
| Copyright terms: Public domain | W3C validator |