| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19145 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3950 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 ↾s cress 17275 Grpcgrp 18952 SubGrpcsubg 19139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-subg 19142 |
| This theorem is referenced by: subg0 19151 subginv 19152 subgmulgcl 19158 subgsubm 19167 subsubg 19168 subgint 19169 isnsg 19174 nsgconj 19178 isnsg3 19179 ssnmz 19185 nmznsg 19187 eqger 19197 eqgid 19199 eqgen 19200 eqgcpbl 19201 qusgrp 19205 quseccl 19206 qusadd 19207 qus0 19208 qusinv 19209 qussub 19210 ecqusaddcl 19212 resghm2 19252 resghm2b 19253 conjsubg 19269 conjsubgen 19270 conjnmz 19271 conjnmzb 19272 qusghm 19274 ghmqusnsg 19301 ghmquskerlem3 19305 subgga 19319 gastacos 19329 orbstafun 19330 cntrsubgnsg 19362 oppgsubg 19383 isslw 19627 sylow2blem1 19639 sylow2blem2 19640 sylow2blem3 19641 slwhash 19643 lsmval 19667 lsmelval 19668 lsmelvali 19669 lsmelvalm 19670 lsmsubg 19673 lsmless1 19679 lsmless2 19680 lsmless12 19681 lsmass 19688 lsm01 19690 lsm02 19691 subglsm 19692 lsmmod 19694 lsmcntz 19698 lsmcntzr 19699 lsmdisj2 19701 subgdisj1 19710 pj1f 19716 pj1id 19718 pj1lid 19720 pj1rid 19721 pj1ghm 19722 subgdmdprd 20055 subgdprd 20056 dprdsn 20057 pgpfaclem2 20103 cldsubg 24120 gsumsubg 33050 qusker 33378 grplsmid 33433 quslsm 33434 qus0g 33436 qusrn 33438 nsgqus0 33439 nsgmgclem 33440 nsgqusf1olem1 33442 nsgqusf1olem2 33443 nsgqusf1olem3 33444 |
| Copyright terms: Public domain | W3C validator |