| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19039 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 Grpcgrp 18846 SubGrpcsubg 19033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subg 19036 |
| This theorem is referenced by: subg0 19045 subginv 19046 subgmulgcl 19052 subgsubm 19061 subsubg 19062 subgint 19063 isnsg 19068 nsgconj 19072 isnsg3 19073 ssnmz 19079 nmznsg 19081 eqger 19091 eqgid 19093 eqgen 19094 eqgcpbl 19095 qusgrp 19099 quseccl 19100 qusadd 19101 qus0 19102 qusinv 19103 qussub 19104 ecqusaddcl 19106 resghm2 19146 resghm2b 19147 conjsubg 19163 conjsubgen 19164 conjnmz 19165 conjnmzb 19166 qusghm 19168 ghmqusnsg 19195 ghmquskerlem3 19199 subgga 19213 gastacos 19223 orbstafun 19224 cntrsubgnsg 19256 oppgsubg 19276 isslw 19521 sylow2blem1 19533 sylow2blem2 19534 sylow2blem3 19535 slwhash 19537 lsmval 19561 lsmelval 19562 lsmelvali 19563 lsmelvalm 19564 lsmsubg 19567 lsmless1 19573 lsmless2 19574 lsmless12 19575 lsmass 19582 lsm01 19584 lsm02 19585 subglsm 19586 lsmmod 19588 lsmcntz 19592 lsmcntzr 19593 lsmdisj2 19595 subgdisj1 19604 pj1f 19610 pj1id 19612 pj1lid 19614 pj1rid 19615 pj1ghm 19616 subgdmdprd 19949 subgdprd 19950 dprdsn 19951 pgpfaclem2 19997 cldsubg 24027 gsumsubg 33024 qusker 33312 grplsmid 33367 quslsm 33368 qus0g 33370 qusrn 33372 nsgqus0 33373 nsgmgclem 33374 nsgqusf1olem1 33376 nsgqusf1olem2 33377 nsgqusf1olem3 33378 |
| Copyright terms: Public domain | W3C validator |