Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 18670 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1143 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 Grpcgrp 18492 SubGrpcsubg 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subg 18667 |
This theorem is referenced by: subg0 18676 subginv 18677 subgmulgcl 18683 subgsubm 18692 subsubg 18693 subgint 18694 isnsg 18698 nsgconj 18702 isnsg3 18703 ssnmz 18709 nmznsg 18711 eqger 18721 eqgid 18723 eqgen 18724 eqgcpbl 18725 qusgrp 18726 quseccl 18727 qusadd 18728 qus0 18729 qusinv 18730 qussub 18731 resghm2 18766 resghm2b 18767 conjsubg 18781 conjsubgen 18782 conjnmz 18783 conjnmzb 18784 qusghm 18786 subgga 18821 gastacos 18831 orbstafun 18832 cntrsubgnsg 18862 oppgsubg 18885 isslw 19128 sylow2blem1 19140 sylow2blem2 19141 sylow2blem3 19142 slwhash 19144 lsmval 19168 lsmelval 19169 lsmelvali 19170 lsmelvalm 19171 lsmsubg 19174 lsmless1 19180 lsmless2 19181 lsmless12 19182 lsmass 19190 lsm01 19192 lsm02 19193 subglsm 19194 lsmmod 19196 lsmcntz 19200 lsmcntzr 19201 lsmdisj2 19203 subgdisj1 19212 pj1f 19218 pj1id 19220 pj1lid 19222 pj1rid 19223 pj1ghm 19224 subgdmdprd 19552 subgdprd 19553 dprdsn 19554 pgpfaclem2 19600 cldsubg 23170 gsumsubg 31208 qusker 31451 grplsmid 31494 quslsm 31495 nsgqus0 31497 nsgmgclem 31498 nsgqusf1olem1 31500 nsgqusf1olem2 31501 nsgqusf1olem3 31502 |
Copyright terms: Public domain | W3C validator |