Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version |
Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | issubg 18755 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
3 | 2 | simp1bi 1144 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 Grpcgrp 18577 SubGrpcsubg 18749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subg 18752 |
This theorem is referenced by: subg0 18761 subginv 18762 subgmulgcl 18768 subgsubm 18777 subsubg 18778 subgint 18779 isnsg 18783 nsgconj 18787 isnsg3 18788 ssnmz 18794 nmznsg 18796 eqger 18806 eqgid 18808 eqgen 18809 eqgcpbl 18810 qusgrp 18811 quseccl 18812 qusadd 18813 qus0 18814 qusinv 18815 qussub 18816 resghm2 18851 resghm2b 18852 conjsubg 18866 conjsubgen 18867 conjnmz 18868 conjnmzb 18869 qusghm 18871 subgga 18906 gastacos 18916 orbstafun 18917 cntrsubgnsg 18947 oppgsubg 18970 isslw 19213 sylow2blem1 19225 sylow2blem2 19226 sylow2blem3 19227 slwhash 19229 lsmval 19253 lsmelval 19254 lsmelvali 19255 lsmelvalm 19256 lsmsubg 19259 lsmless1 19265 lsmless2 19266 lsmless12 19267 lsmass 19275 lsm01 19277 lsm02 19278 subglsm 19279 lsmmod 19281 lsmcntz 19285 lsmcntzr 19286 lsmdisj2 19288 subgdisj1 19297 pj1f 19303 pj1id 19305 pj1lid 19307 pj1rid 19308 pj1ghm 19309 subgdmdprd 19637 subgdprd 19638 dprdsn 19639 pgpfaclem2 19685 cldsubg 23262 gsumsubg 31306 qusker 31549 grplsmid 31592 quslsm 31593 nsgqus0 31595 nsgmgclem 31596 nsgqusf1olem1 31598 nsgqusf1olem2 31599 nsgqusf1olem3 31600 |
Copyright terms: Public domain | W3C validator |