| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19114 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 ↾s cress 17253 Grpcgrp 18921 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-subg 19111 |
| This theorem is referenced by: subg0 19120 subginv 19121 subgmulgcl 19127 subgsubm 19136 subsubg 19137 subgint 19138 isnsg 19143 nsgconj 19147 isnsg3 19148 ssnmz 19154 nmznsg 19156 eqger 19166 eqgid 19168 eqgen 19169 eqgcpbl 19170 qusgrp 19174 quseccl 19175 qusadd 19176 qus0 19177 qusinv 19178 qussub 19179 ecqusaddcl 19181 resghm2 19221 resghm2b 19222 conjsubg 19238 conjsubgen 19239 conjnmz 19240 conjnmzb 19241 qusghm 19243 ghmqusnsg 19270 ghmquskerlem3 19274 subgga 19288 gastacos 19298 orbstafun 19299 cntrsubgnsg 19331 oppgsubg 19351 isslw 19595 sylow2blem1 19607 sylow2blem2 19608 sylow2blem3 19609 slwhash 19611 lsmval 19635 lsmelval 19636 lsmelvali 19637 lsmelvalm 19638 lsmsubg 19641 lsmless1 19647 lsmless2 19648 lsmless12 19649 lsmass 19656 lsm01 19658 lsm02 19659 subglsm 19660 lsmmod 19662 lsmcntz 19666 lsmcntzr 19667 lsmdisj2 19669 subgdisj1 19678 pj1f 19684 pj1id 19686 pj1lid 19688 pj1rid 19689 pj1ghm 19690 subgdmdprd 20023 subgdprd 20024 dprdsn 20025 pgpfaclem2 20071 cldsubg 24066 gsumsubg 32993 qusker 33317 grplsmid 33372 quslsm 33373 qus0g 33375 qusrn 33377 nsgqus0 33378 nsgmgclem 33379 nsgqusf1olem1 33381 nsgqusf1olem2 33382 nsgqusf1olem3 33383 |
| Copyright terms: Public domain | W3C validator |