| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19058 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Grpcgrp 18865 SubGrpcsubg 19052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subg 19055 |
| This theorem is referenced by: subg0 19064 subginv 19065 subgmulgcl 19071 subgsubm 19080 subsubg 19081 subgint 19082 isnsg 19087 nsgconj 19091 isnsg3 19092 ssnmz 19098 nmznsg 19100 eqger 19110 eqgid 19112 eqgen 19113 eqgcpbl 19114 qusgrp 19118 quseccl 19119 qusadd 19120 qus0 19121 qusinv 19122 qussub 19123 ecqusaddcl 19125 resghm2 19165 resghm2b 19166 conjsubg 19182 conjsubgen 19183 conjnmz 19184 conjnmzb 19185 qusghm 19187 ghmqusnsg 19214 ghmquskerlem3 19218 subgga 19232 gastacos 19242 orbstafun 19243 cntrsubgnsg 19275 oppgsubg 19295 isslw 19538 sylow2blem1 19550 sylow2blem2 19551 sylow2blem3 19552 slwhash 19554 lsmval 19578 lsmelval 19579 lsmelvali 19580 lsmelvalm 19581 lsmsubg 19584 lsmless1 19590 lsmless2 19591 lsmless12 19592 lsmass 19599 lsm01 19601 lsm02 19602 subglsm 19603 lsmmod 19605 lsmcntz 19609 lsmcntzr 19610 lsmdisj2 19612 subgdisj1 19621 pj1f 19627 pj1id 19629 pj1lid 19631 pj1rid 19632 pj1ghm 19633 subgdmdprd 19966 subgdprd 19967 dprdsn 19968 pgpfaclem2 20014 cldsubg 23998 gsumsubg 32986 qusker 33320 grplsmid 33375 quslsm 33376 qus0g 33378 qusrn 33380 nsgqus0 33381 nsgmgclem 33382 nsgqusf1olem1 33384 nsgqusf1olem2 33385 nsgqusf1olem3 33386 |
| Copyright terms: Public domain | W3C validator |