| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19114 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3931 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Grpcgrp 18921 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-subg 19111 |
| This theorem is referenced by: subg0 19120 subginv 19121 subgmulgcl 19127 subgsubm 19136 subsubg 19137 subgint 19138 isnsg 19143 nsgconj 19147 isnsg3 19148 ssnmz 19154 nmznsg 19156 eqger 19166 eqgid 19168 eqgen 19169 eqgcpbl 19170 qusgrp 19174 quseccl 19175 qusadd 19176 qus0 19177 qusinv 19178 qussub 19179 ecqusaddcl 19181 resghm2 19221 resghm2b 19222 conjsubg 19238 conjsubgen 19239 conjnmz 19240 conjnmzb 19241 qusghm 19243 ghmqusnsg 19270 ghmquskerlem3 19274 subgga 19288 gastacos 19298 orbstafun 19299 cntrsubgnsg 19331 oppgsubg 19351 isslw 19594 sylow2blem1 19606 sylow2blem2 19607 sylow2blem3 19608 slwhash 19610 lsmval 19634 lsmelval 19635 lsmelvali 19636 lsmelvalm 19637 lsmsubg 19640 lsmless1 19646 lsmless2 19647 lsmless12 19648 lsmass 19655 lsm01 19657 lsm02 19658 subglsm 19659 lsmmod 19661 lsmcntz 19665 lsmcntzr 19666 lsmdisj2 19668 subgdisj1 19677 pj1f 19683 pj1id 19685 pj1lid 19687 pj1rid 19688 pj1ghm 19689 subgdmdprd 20022 subgdprd 20023 dprdsn 20024 pgpfaclem2 20070 cldsubg 24054 gsumsubg 33045 qusker 33369 grplsmid 33424 quslsm 33425 qus0g 33427 qusrn 33429 nsgqus0 33430 nsgmgclem 33431 nsgqusf1olem1 33433 nsgqusf1olem2 33434 nsgqusf1olem3 33435 |
| Copyright terms: Public domain | W3C validator |