| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgrcl | Structured version Visualization version GIF version | ||
| Description: Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgrcl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | issubg 19023 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
| 3 | 2 | simp1bi 1145 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 Grpcgrp 18830 SubGrpcsubg 19017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subg 19020 |
| This theorem is referenced by: subg0 19029 subginv 19030 subgmulgcl 19036 subgsubm 19045 subsubg 19046 subgint 19047 isnsg 19052 nsgconj 19056 isnsg3 19057 ssnmz 19063 nmznsg 19065 eqger 19075 eqgid 19077 eqgen 19078 eqgcpbl 19079 qusgrp 19083 quseccl 19084 qusadd 19085 qus0 19086 qusinv 19087 qussub 19088 ecqusaddcl 19090 resghm2 19130 resghm2b 19131 conjsubg 19147 conjsubgen 19148 conjnmz 19149 conjnmzb 19150 qusghm 19152 ghmqusnsg 19179 ghmquskerlem3 19183 subgga 19197 gastacos 19207 orbstafun 19208 cntrsubgnsg 19240 oppgsubg 19260 isslw 19505 sylow2blem1 19517 sylow2blem2 19518 sylow2blem3 19519 slwhash 19521 lsmval 19545 lsmelval 19546 lsmelvali 19547 lsmelvalm 19548 lsmsubg 19551 lsmless1 19557 lsmless2 19558 lsmless12 19559 lsmass 19566 lsm01 19568 lsm02 19569 subglsm 19570 lsmmod 19572 lsmcntz 19576 lsmcntzr 19577 lsmdisj2 19579 subgdisj1 19588 pj1f 19594 pj1id 19596 pj1lid 19598 pj1rid 19599 pj1ghm 19600 subgdmdprd 19933 subgdprd 19934 dprdsn 19935 pgpfaclem2 19981 cldsubg 24014 gsumsubg 33012 qusker 33296 grplsmid 33351 quslsm 33352 qus0g 33354 qusrn 33356 nsgqus0 33357 nsgmgclem 33358 nsgqusf1olem1 33360 nsgqusf1olem2 33361 nsgqusf1olem3 33362 |
| Copyright terms: Public domain | W3C validator |