MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless12 Structured version   Visualization version   GIF version

Theorem lsmless12 19051
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))

Proof of Theorem lsmless12
StepHypRef Expression
1 subgrcl 18548 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21ad2antrr 726 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝐺 ∈ Grp)
3 eqid 2737 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43subgss 18544 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
54ad2antrr 726 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ⊆ (Base‘𝐺))
6 simprr 773 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇𝑈)
73subgss 18544 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
87ad2antlr 727 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ⊆ (Base‘𝐺))
96, 8sstrd 3911 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇 ⊆ (Base‘𝐺))
10 simprl 771 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑅𝑆)
11 lsmub1.p . . . 4 = (LSSum‘𝐺)
123, 11lsmless1x 19033 . . 3 (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑅𝑆) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
132, 5, 9, 10, 12syl31anc 1375 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
14 simpll 767 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
15 simplr 769 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
1611lsmless2 19050 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1714, 15, 6, 16syl3anc 1373 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1813, 17sstrd 3911 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wss 3866  cfv 6380  (class class class)co 7213  Basecbs 16760  Grpcgrp 18365  SubGrpcsubg 18537  LSSumclsm 19023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-subg 18540  df-lsm 19025
This theorem is referenced by:  lsmlub  19054  dochexmidlem2  39212
  Copyright terms: Public domain W3C validator