![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmless12 | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless12 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19048 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | 1 | ad2antrr 723 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝐺 ∈ Grp) |
3 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 3 | subgss 19044 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
5 | 4 | ad2antrr 723 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑆 ⊆ (Base‘𝐺)) |
6 | simprr 770 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑇 ⊆ 𝑈) | |
7 | 3 | subgss 19044 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
8 | 7 | ad2antlr 724 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑈 ⊆ (Base‘𝐺)) |
9 | 6, 8 | sstrd 3992 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑇 ⊆ (Base‘𝐺)) |
10 | simprl 768 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑅 ⊆ 𝑆) | |
11 | lsmub1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 3, 11 | lsmless1x 19554 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑅 ⊆ 𝑆) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑇)) |
13 | 2, 5, 9, 10, 12 | syl31anc 1372 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑇)) |
14 | simpll 764 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺)) | |
15 | simplr 766 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺)) | |
16 | 11 | lsmless2 19571 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
17 | 14, 15, 6, 16 | syl3anc 1370 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
18 | 13, 17 | sstrd 3992 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 Grpcgrp 18856 SubGrpcsubg 19037 LSSumclsm 19544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-subg 19040 df-lsm 19546 |
This theorem is referenced by: lsmlub 19574 dochexmidlem2 40636 |
Copyright terms: Public domain | W3C validator |