MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless12 Structured version   Visualization version   GIF version

Theorem lsmless12 18541
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))

Proof of Theorem lsmless12
StepHypRef Expression
1 subgrcl 18062 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21ad2antrr 713 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝐺 ∈ Grp)
3 eqid 2772 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43subgss 18058 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
54ad2antrr 713 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ⊆ (Base‘𝐺))
6 simprr 760 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇𝑈)
73subgss 18058 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
87ad2antlr 714 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ⊆ (Base‘𝐺))
96, 8sstrd 3862 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇 ⊆ (Base‘𝐺))
10 simprl 758 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑅𝑆)
11 lsmub1.p . . . 4 = (LSSum‘𝐺)
123, 11lsmless1x 18524 . . 3 (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑅𝑆) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
132, 5, 9, 10, 12syl31anc 1353 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
14 simpll 754 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
15 simplr 756 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
1611lsmless2 18540 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1714, 15, 6, 16syl3anc 1351 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1813, 17sstrd 3862 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  wss 3823  cfv 6182  (class class class)co 6970  Basecbs 16333  Grpcgrp 17885  SubGrpcsubg 18051  LSSumclsm 18514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7495  df-2nd 7496  df-subg 18054  df-lsm 18516
This theorem is referenced by:  lsmlub  18543  dochexmidlem2  38042
  Copyright terms: Public domain W3C validator