MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmless12 Structured version   Visualization version   GIF version

Theorem lsmless12 19575
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
lsmub1.p = (LSSum‘𝐺)
Assertion
Ref Expression
lsmless12 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))

Proof of Theorem lsmless12
StepHypRef Expression
1 subgrcl 19044 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21ad2antrr 726 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝐺 ∈ Grp)
3 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
43subgss 19040 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
54ad2antrr 726 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ⊆ (Base‘𝐺))
6 simprr 772 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇𝑈)
73subgss 19040 . . . . 5 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
87ad2antlr 727 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ⊆ (Base‘𝐺))
96, 8sstrd 3945 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑇 ⊆ (Base‘𝐺))
10 simprl 770 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑅𝑆)
11 lsmub1.p . . . 4 = (LSSum‘𝐺)
123, 11lsmless1x 19557 . . 3 (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑅𝑆) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
132, 5, 9, 10, 12syl31anc 1375 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑇))
14 simpll 766 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑆 ∈ (SubGrp‘𝐺))
15 simplr 768 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → 𝑈 ∈ (SubGrp‘𝐺))
1611lsmless2 19574 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑈) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1714, 15, 6, 16syl3anc 1373 . 2 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑆 𝑇) ⊆ (𝑆 𝑈))
1813, 17sstrd 3945 1 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅𝑆𝑇𝑈)) → (𝑅 𝑇) ⊆ (𝑆 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wss 3902  cfv 6481  (class class class)co 7346  Basecbs 17120  Grpcgrp 18846  SubGrpcsubg 19033  LSSumclsm 19547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-subg 19036  df-lsm 19549
This theorem is referenced by:  lsmlub  19577  dochexmidlem2  41506
  Copyright terms: Public domain W3C validator