![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmless12 | Structured version Visualization version GIF version |
Description: Subset implies subgroup sum subset. (Contributed by NM, 14-Jan-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
Ref | Expression |
---|---|
lsmub1.p | ⊢ ⊕ = (LSSum‘𝐺) |
Ref | Expression |
---|---|
lsmless12 | ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subgrcl 19171 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
2 | 1 | ad2antrr 725 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝐺 ∈ Grp) |
3 | eqid 2740 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 3 | subgss 19167 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
5 | 4 | ad2antrr 725 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑆 ⊆ (Base‘𝐺)) |
6 | simprr 772 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑇 ⊆ 𝑈) | |
7 | 3 | subgss 19167 | . . . . 5 ⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺)) |
8 | 7 | ad2antlr 726 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑈 ⊆ (Base‘𝐺)) |
9 | 6, 8 | sstrd 4019 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑇 ⊆ (Base‘𝐺)) |
10 | simprl 770 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑅 ⊆ 𝑆) | |
11 | lsmub1.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
12 | 3, 11 | lsmless1x 19686 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝑆 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑅 ⊆ 𝑆) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑇)) |
13 | 2, 5, 9, 10, 12 | syl31anc 1373 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑇)) |
14 | simpll 766 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑆 ∈ (SubGrp‘𝐺)) | |
15 | simplr 768 | . . 3 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → 𝑈 ∈ (SubGrp‘𝐺)) | |
16 | 11 | lsmless2 19703 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑈) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
17 | 14, 15, 6, 16 | syl3anc 1371 | . 2 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑆 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
18 | 13, 17 | sstrd 4019 | 1 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺)) ∧ (𝑅 ⊆ 𝑆 ∧ 𝑇 ⊆ 𝑈)) → (𝑅 ⊕ 𝑇) ⊆ (𝑆 ⊕ 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Grpcgrp 18973 SubGrpcsubg 19160 LSSumclsm 19676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-subg 19163 df-lsm 19678 |
This theorem is referenced by: lsmlub 19706 dochexmidlem2 41418 |
Copyright terms: Public domain | W3C validator |